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Suren s

When textbooks in the field of "economic statistics" are subjected to a
critical apnraisal, it is evideat thct ruch space is given to methods of
analyzing data., Methods of collecting data, on the other hand, usually receive
little or no attention. This situation doubtless is thz result of a misconcep-
tion regarding the function of the statistician that was nrevelent in the past.
At one time, the mein function of the statistician was to "get something out
0f" whatever date mizht be available. Collecting data was not considered a job
for the statisticiszn. In fact, the mathemsatical princinles that meke the col-
lecticn of deate the sclence it has now becoms, were not yet fully urlerstood.

Scientific study of sempling techniques is a comperatively recent develop-
ment in statistics. It is a subject thot should now be given the prominence
it deserves. The collection of the data to be used in a study is as much of a
job for the stetistician as the latter analysis of the data. It reouires just
as much thouvght and technical training as any of his other duties. ¥he out-
line of the subject in the following pages rapresents an atterpt to make the
mathenmatical orinciples of sampling aveilable to asricultural statisticians
and economists who received their statistical education in the earlisr tradi-
tion. It is intended primarily for the statisticsl staff of the Bureau of
Agriculturel Econorics, U. S. Department of Agriculture. Sampling provides
the besis for most of the statistical work of the 3ureau, end a large part of
the statistical research is directed toward tne improvement of sampling tech-
niques. During the last 4 years, this reseerch hass been augmented by a
Bankhesd-Jones research project designed smecifically for the purpose of in- -
vestigating statis*ical methodology in the field of agricultural statistics.
The mathematical asnects of sempling, end the aprnlication of mathemautical
theory to practical problems, were studied vnder this project a2t the Bureau's
research offices cooperating with Iows State College and Horth Carolina State
College. In large measure, the author of this puklication has drawn upon the
results of these investigations for the methcds and viewpoinis described in
the following pages. Anr merit that the publicaticn may have is also largely
due to tie counsel ané inspiration of W. F. Callander, iormerly Head Agricul-
turel Statistician, whose constant efforts to improve agricultural statistics
are reflected in the entire statistical research nrogram of the Bureau.

Some of the material on general statistics in the following peges may
appear irrelevant %o sem>ling work; it has been included because the develop-
ment of the theory of samrling has introduced a concomitent change in the
point of view from which the entire subject matter of statistics should be
discussed. Althouzh the procedures are fundamentally the seme as those
described ir most textbeoks, they are presented here with a view to relatine
information obtained from a sample to the pcnulation from which the sample was
drawn. Textbools generally tend to focus so much attention on the aneslysis of
the semple thet the distinction between the semple 2né nmopuletion is some-
times overlooked.

A study of the theory of s-mpling should not be apnroached under the
impression thsat sampline theory is a specialized branch of statistics.
Sempling theory is statistics ané, conversely, statistics is the theory of
sampling. The only justification for choosing "Theory of Sampling" as a title




lies in tae fret oot acst texts o1 so-called zenersl eteotistice are nct vritter
from the viewypoint of the man whose chler concern is the ccllectleon cf tle nri-
mary Catr for £n investisetior. A depnrture from thet custon seems sufficiently

rrCicel tc werreat » title of its own.

It is evident, therefore, thet under rn 2ll-inclusive concept of the
theory of sam.lins as defired above, the subiect matter under discussion siculz
be no different from thet usurlly discussed in books on seneresl stotisticel
theory. The orly difference lies in the point of view from whick thet subject
wptter is discussed. In recent years the theory of exmerimentel design hes
received considerrble attention; some stotisticirsns sre under the impression
that thie subject is of interest only to scronomists =nd similer rrserre:
workers, out thie is not true. In ite drosder ~smects, the subiect of experi-
mentsl desisn is a good illustration of the presentstion of stotisticel therory
from the viermeint of the men ensrerd in the collection of »rimsry date. Tnere
is no fundrmentsl difference between the design of # well-plenned exveriment
ané the deeien of a well-orgenized ssmpling scheme to be used in 2 samole-
census enunerction or similer underteking. The perticular desiens thet ere
used may Ciffer from one another, dewnending upon the neture of the investiza-
tion, but tre mathematical princizles ore identicel.

‘Ae the subject of sempline theory embraces the entire field of stetisticel
methodolosy, it scems evident thet a well-rounded trainins in general statis-
tice is # necessary nrerequisite to an undefrsterdin: of thet theory. The
sresent wor should serve as eon »bricdged toext on genersl stetisticel -aetinod-
olcey from te standvolnt of the strtisticisn cherzed with the responsibility
for ccllectin~ detr as efficiently, accurntely, end economically es poesitle.
His worl is not swectrculsr ~né mry not elwarye be fully anprecinted by these
wko latsr use tie drtr ke hrs rescabled, bat the technicel trainine recuired
for the clorunate diacksree of his Auties is as extonsive as thot reouired by
those who leter use his results, eslthoush the lstter group of workers may not
2li-aye be avare of it. The victure of th. collcctor of primary dats as an
unimaginative drudeze engegcd in the éull routine of essembling flgures to be
analyzed b a superior order of belnes is decidedly out of dete.

Welter A. Hendricks

Agricultural Statistician
Bureau of Agricultural Economics
U.S. Department of Agriculture

and
Resident Ccllaborator
Lepartment of Experimental Statistics
‘¥orth Carolina State Ccllege
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Some Principles of Notetion

Before trhe study of stotistics is beesun from ~ny viewpoint, it is lurmor-
tert that the student understend tie symbolism or the langusge of the subject.
It is assumed that ke is 2lready familier with *the terminology, symbolism, and
wrocedures ¢f clonent-ry rloebra. Statisticel literature~contrins sone symbols
thet are usuelly not mentioned in books on elementary mathematics.

At this point, it is desirable to discuss the subscript notetion that is
frecuently encountered in statisticel formules. This system of notation can
be explained most clesrly by referring to 2 smwecific example. Sumpose one
wished to discuss the acresges of whest in 3 counties end wants to exnress these
acreases by algebraic symbols. He could reoresent the acreage in the first
county by 2, thet in the second by b, and that in the third by c. This would
be entirely adecuate for his purpose. Sunypose, kovever, thet, instead of only
Z, he wes dealing with 100 or more counties. The simple method of using a
different letter to renresent the acrerse in ecach county can no longcer be
employed conveniently. There are only 26 letteres in the elphebet. EHe could
use canitel latters or alphadets from foreign larsurges to increasc the numder
of available symbols as required, but this would be swkwaréd.

The subscrivt notation wrovides a solution. Instesd of usinz o difterent
letter for cack county, ke can usc thr same letter for eact county and distin-
guish one county from ancther by atteching subscripts to thet letter. For
example, he cen let aq represent the whest acr-ase in the first county, s

that in ther second, 8z that in tre third, end so on. The difficulties that

might be encountered with the first system of notation src thus avoided bocause
the possibilitics for including eny given number of counties are unlinited under
the new system.

When this systom is uscd by & stetisticien, he ususlly sey~ thet he 1s
£ o

1
renresenting tlie wvhert ecreaze in any riven county by a3 wnere i ngsumes the
Z,

v
ané 80 on. If he has' s definite number of counties in mind,
tion into the followineg form,

velues 1, 2,
such as 92, ke would condense kis defini

"Let Pys i=1, 2, & ---, 92, represent

the wheat acreazes in 92 counties,"

whick mesns tirt he is usine the letter 2 to ravresent the whenrt acreage in o
county end is stteching sudscrints from 1 to 92 to that letter in order to
distinpuish onc county fromemother. If ko wiskee $o specify sny fixed nuabder
of county vheat acreszes regardless of what that number might bde, he would
write,

i=1, 2, 3, -——-, I, represent

eat a es in % counties,"

which mesns tizet he is talking ahout a definit ¢ numbcr of counties but does
not cerc, or need. to tell what thet number is. This method of revresentation
is convenirnt to use and simwlifies the »ro*lem of aleebraic notation
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considerably. The symboli 2y is sometimes called the gencral trrm of the

serles 211 35, g, ===, g because cach term in the series cen be derived from

a; by letting 1 assume a particular valua.

This system can be extended to problems requiring more detailed notation.
Suppose that, in addition to identifying the wheat zcreaze in each of 2 number
of counties, one 2lsc wishes t¢ distinguish the wheat acreages in particuler
townehips. He cen let the letter o represent wheat acrcage, as before, and
attach 2 subsecripts to that letter. One subscript specifies the county and
the other specifies the township., The symbol fga, for example, can be used to

specify the wheat acreage in the seconf township of the third county. The
generel term of a series of such symbols cen be ropresented by a4 3 where 1 cwn

ba assigned any number to specify a county erd J coan be assigned any number to
specify e tcwnship to that county.

3xercise 1. - Wheat acrerces were messurcd for 6 townships in one county,
8 townships in o second county, ané 2 townships in 2 third
county. Put the proper subscripts in the syabol ays to
specify each of these 16 townships rnd give the meoning of
each resulting expresszion in words.

This general method of notntion should be used in complicated protlems.
There is no need to use it in simple problems where it is eesicr to use diffsr-
ent letters of the slphabet to make necessary distisctions. When s simple
systen of nctation will meet 2ll requirements of = particulsr problom, the uce
of subscripts introduces unnecessrry complications. It is alweys decirable to
chocse o system of notstion that will present results and formulss in the
clearest =znd leest cumbersome fashion.

Sunmntion Signe

Tre nlgedbrzic expressior representing the sunm of a series of nunbers,
such as the sum of the whert zcreoges in 92 counties, night be represented by
the expression,

1t oagt ag + ~--- + 89z

Py
< &

where aq is the acreage in thas firet county, & trat in the sccond, and so on.

Mathemeticions usually like to abbreviste this expression intc the follewirg
form, which menns the seme thing ond is essier to write:

The Greek letter, copital sigma, is called a summrtion sign. The wswanr—
tior sign 1s a special case of what msthemnticians cerll symbolic Jperators,
because it is » eynbol that stonds for an opersticr tc be performed on the
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rumbers that follow it. In this case the numbers that follecw the summation
sign are represented by the general term ay. The individual numbers that must

be added nre specified by the values that the subscript i assumes. These values
are indicated by the numhers written below srd above the summotion sign end
show thet 1 is to trks the values 1 to 92 inclusive. In terms of matrematical
symbols, these concepts c~n be expressed by tha f2llowing eguabion thrt 1is
equivalent t0 the definition just glven:

92
2(?.1) = a3 + ag + ?‘3 +t -+ ags - = - - (1)

i=1

At the present time, some statisticisns use the letter S instead ¢f Z as
a summation sign. This substitution is made because the Greek alphabet is not
included on most typewriters or in sets of printer's type. Since the letter S
serves the same purpose, it is ususlly more economical for the statistician to
confine himself to the English alphabet in his publications so that the pur-
chase of additional type will nct be necessary. In the present publicetion it
seems desirable to follow this notation rather than the more classical nota-
ticn thet is still widely used in publicatipns on pure mathematics. The pre~
ceding equation will thus be written in this form:

92 :
S(ﬁi)=&l+82+a3+"""+aga--"'-(2#’

i=1

If a statisticlen wishes toc write an expression for the sum of a series
of numbers without actuslly specifying how many he has in mind, he can do this
by substituting e letter for the number appearing above the summation sign as
follows: ‘

(ai) =aytegtoagt-—tay ---- (3)

i=1
If, as is oftcn the case, the text of the statistician's manuscript leaves no
doubt in regard to the numders that are to be added, it is not necessary to
put so much detail into the algebraic expression representing the relationship,
Cne might simply abbreviste equations like the preceding to the form.

1 X

S(ay) =a) *ag + ag+ =+ ay - - -~ - (4)

or to the still more simple form,

s(a) = Ay tagtagt ———+a - ---- (5)

2 3 .4

Such abbrevintions are common in statisticel publications but should not
be used if they are likely to be misunderstood. Unless the accompanying dis-
cusgion is perfectly clesr in regard to what is intended, it is preferadle to
avoid such shortcuts. The stetistician should have his audience clearly in
mind, so he can be sure of using a system of notetion that can be followed by
the persons for whose benefit he is writing. Scome classes of readers will
require more detoiled explanaticn then cthers.




Wher the druble-subsceript notaticr ie uced, the sumamnatiun extends to “oth
subscripts. In suck problems, it is custemrry to vse twe summstion signs, The
sum of the 16 wheat acreagee, «iver in Exercisze 1, wruld te writte:,

88(eyy) = oy *app Ay tayy Ay et
221 ¥ 2ap Y Az tey, toegs toegg toApy *oopg *
Pz ¥ %an e (8)

One summaticr sign indicates that the tcwnshin acrenges shouli te added
for esch county. The second indicrtes that the totols for erch county should
e added. In such protlems, it is not necessery to specify the order in which
the cdditicns are performed Tecause the grend totnl will always have the sanme

value no metter which subtotals are computed as intermediste steps in the
process,

Zxercise 2, - Whent acrergos were measured in 5 tcwnehips for each of 6
ceunties. Ccmmute the value of Ss(nij) by the following
aethods:

(a) First write the expressica for the 6 county totals
and add the results.

(1), Write the expressions for the 5 sums cbtrincd by sdda-
ing the dats for townehip #1, township #2, township
#3, townskip #4, ~nd township #5, one at o time for oll
counties. Add these 5 totals and show that the grend
totsl 1s  equel to that given by methed (a).

Averages

Usc of ar sverese re o method of representing o set of numbers by = single
rwnber for purpiscs of summnrization is nerhaps one of the cldest devices of
vtatistics. The concepts underlying the usc of an overcge are of fundomental
importence in the thaory af sampling, and they involve more careful thinking
% the pert of the wtetisticlen than is commonly supposed, as the follewing
tiscussion will indieste.

Some stntisticinns regsrd rn avercee as » numder that is "most typicall
of rn entire set of numbers. This most-typical-number concept does not imply
that the sverage hns to be one of the numbers in the set. The average height
of a ercup of men might be 67 inches and this micht be resgnrded 2s the typi-
czl hnsight for the group even though no individual in that group is exactly
€7 incres tall. The most-typical-number concept thus provides an early intro-
ducticn to an importent feature of statistics, namely, that the individuals in
o wrrbicalsr group are uf interest, not so much in themselves, but for the
informstion they can bYe made to yield sbout the general chrracter of groups of
thet ind.

As the most typical number of o set wess rerarded by most stoticticianeg »e¢
some namter abeut halfwsy between the amallest 2nd the l=rrast, sveragos were
£lven the name of measures of central tendency. This terminoloey A ¢ ret
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seem 80 expressive as most-iypical-number, but it has the advantage of direcct-
ing attenticn to the matter of freguency distriduticns, which is undoudbtedly
the reeson why it wses adopted.

Experimenters in meny fields of work, who wverc engaged in taking large
nunbers of measurements, scon noticed thot measurements generally grouped them-
selves into bell-shsped frequency distrihutions. Ex%remely small or extremely
large measurerents cccurred only rarely, bubt meesurements neer the center of
the range were rather common. Therefora, it wns concluded that mest mensure-
nents hed a tendency to concentrate shont the sversse anéd, conversely, that the
average should bve regorded ss the noint arcout which the measurements tended to
concentrate. For an llustration brmsecé cn sgricultursl deotz, the student should
refer to figure 1, which gives the frequency distritution of the yield per acre
of cotton for the 75 counties of Arkensas in 1239, The deta were conmputed from
figures reported by the 1940 census, the yleld ner acre for each county being
taken o8 on individual obvservaticn,

[ ]
Thus far the general nature of an average has been discussad without
describing how an aversge is tc be computed. An average may be defined as a
"most typical numter" or as ~ "measure of ceatral terdency" for purposes of
general discussion, but, from the viewpoint of methematical anslysis, a nore
specific definition is required. Textbooks usually list several types of aver-
sges that may be used under different conditions. A few of these are here
discussed in deteil. '

The arithmetic mesn.

The srithmetic meen ie perhaps the ncst importent sverage with which the
statistician is likely to be concerned. It is computed by adding a2ll the
measurenents and dividing the result by the total number of measurements,

This is the aversge thnt will be used most frequentiy in gencral statistical
work and will receive most of the attention in the following discussions. In
foct, when the word aversge appears henceforth without further elaboration, it
should be understood that reforence is made to the arlithmetic mean, The rea-
sons for its nopulnarity will te evident later.

The median.

The median of 2 set of numbers is defined ag » number such that as meny
nunters of the set fall below it as abecve it. If cne were dealing with a
perfectly symmetrical frequency distribution, the meifian would be equal to the
arithmetic meen. The use of the medion in preforence to the arithmetic mean
is usually recommended in cases wkhere g set of numbers includes a2 few thet
differ wldely from the majority. In such data the median often gives a better
indication of the most typical number or central tenderncy than the arithmetic
mean becouse less ermphasis is given to the extreme observations. This argu-
nent undoubtedly has some merit, but its importance is sometimes exasggerated,
As a matter of feact, the concept of an average as a nost typical number or as
e measure of central tendency 1s not particularly suitable for sampling work.
A more useful concept is discussed later.




" FPigure 1. !'reqmcy distridbution of yield per acre
. 7 of cotton in Arkansas
(Counsy 4ata based on U.S. Census, 1940)

bl = one county

Yiedd per acre (Pounds)



The mode.

The mode of o set of nunbers is defined as the number that occurs most
frequently. If one were dealing with a perfectly symmetrical frequency distri~
bution, the mode would coincide with the arithmctic mean and the median. It
cen be regarded as another messure of "contral tendendy" for frequency distri-
butions hoving » heavy concentration of observntions near the center of the
renge, but it is not very satisfactcry from that point of view because of its
lack of stabllity from sample to sample.

The geometric mcgﬁ.

The geometric mean of n numbers is defined sos the n~th root of their pro-
duct. It has been used 3 a measure of central tendency for frequency distri-
butions that are not symmetrical, dut it has many other srplications. In-
modern statistics, this average eppears in many mathematical operations thrat
have no connection with measures of central tendency. - : : B

The harmonic mean.

The harmonic measn of a set of numbers is defined as the reciprocal of -the
arithmetic mean of the reciprocals cf the numbers. This average, like the
geometric meoan, has other and more important epplications than the measurement
of central tendency. The operations performed in its computation are fre-
quently encountered in statistics, snd it is convenient to refer to the result
as the harmonic mean even though nothing like the measurement of central
tendency is involved. :

The above-mentioned everages, and the list is by no means complete,
are ususlly presented as mepsures of central tendency by many writers. The
conditions under which each should be used are discussed at length in many
books on statistics. Such discussions reprcsent a viewpoint that has 1little
besring on sampling work and is probsbly out of date. The arithmetic mean is
generally used in ceses in which the worker is sctually interested in the con-
cepts underlying sn avercge. This is the only statistical constant that will
be called an aversge hereafter in the present work. . In view of the importance
of the arithmetic mean, the present discussion of averages will be continued
with the understanding that the work "aversge" will henceforth apply only to
the arithmetic mean, : . :

Although the average wes originally regarded as a "most typical number"
or "measure of contral tendency," the trend of modern statistics has been to
afopt the terminology and concepts of the theory of errors. ‘In the study of
stotistics, tho student is socom confronted by = diversity of concepts and
nomenclature, even cbout such a comparatively simple topic of discussion as
the aversge. The reason for this situstion lies in the fact that the subject
matter of statistics -has such an extremely heterogeneous background. The sub-
Ject matter of statistics, as 1t stands today, has evolved from the practice
and researches of French soclal scientists and gamblers; German physicists,
astronometers, and engineers; English biologists and agricultural workers; and
mathematicisns, economiets, and philosopers of all nationalities. All have
contributed more or less independently to a pool of statistical notaticn end
technique. .
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Trhis scrt ot tockeroun’ coul? ot be exzoctel to lerd t: ¢ sinele unlvor-
selly accevted set of concents ond terninclegy, nlthcugh the differencrs in
fundanental ccneoyte from one field of suzlicrtisn te snuthar arc not so sreat
as one 1icht supnosc. Most differcnces thot sre found arc ncthing ncre tharn
differvnces in terminclosy ané asteticn. Certoin cceneepts necessarily rcanire
grentar crphnsis ~t the cxpensc of cthers in any one fileld of applicetion, heow-
cver, and ony attompt nt stanCardizaticn of terminclecgy would meet some oppo-
siticn, On the cther hané, the concepts, terminclogy, nné notation of the
thoory of errcrs src s. general end so well adopted to nll fields of applico-
tion that they ore cominz into ,:enersl use. They rrc particulerly snplicable
‘¢ samplinz work; in fact, sampling work enn hardly be discussed sstisfactorily
ir any cther terms.

In terms of error theory, n single mensurement is on estinnte of the true
vrlue of the quantity thet was mersured. This estirate mey be, and urohably
is, somewhat in crrecr. Experience shiws that large errors in either dircction
occur only rarely, wherens smoll errors occur often; the frequency of cccurrcnce
“f sneall errors in either direction incre-ses as the absclute size of thosge
errors decresscs. TFurthernorc, positive orraors of » Ziven size tend to occur
ag cften ns negative errors of the seme size, sc¢ thet the avernse of nll errcrs
tends tc be equal tc zero, For exnmple, if » bale of cotton were welshed on
the same scele by ench of meny nen, the results would not ssree excctly. Most
nf the errurs would te fairly snall, but ~ few errors could be exnected in both
Circcticns. The crrors would tend to counterbalence onch other so the averare
¢f all weirhts would tend to be the correct welzht of the balc.

As wrrors in thc neizhbtorhoo@ of zcro torad to neceur nore frequently than
any other, a singlc mersurement is ncre likely tc be aqual to the truc volue
of the qu~ntity mensurcd than tu any other single toegible valuge. In cther
words, onc can cxpect en individusl mensurenment to equal to, cr ot lenst
close te, the true velue of the quantity nessured, As the true value is alsc
tre average of all nossible ropentedly chbscrved rmensurcnents, this aversse nay
be enllcd the exsected volue of the quentity riensured. This concept is of
utmost importance in semplini theory nnd is develoned nore fully in the follow-
ine sectian. TFor the present, the render should sccusten himself to¢ thinking
f lete in torms of error thecry. Fror this peint of view, for exnmple, the
verious yiclds of cotton shown in figure 1 shculd be reearded as moasurenents
of the averagec or expected value for the State as a whole., Devigtions fron
the oxpected volue chould be remarded ns errors c¢f neasurcment. Thie funde-
nental princiyle must be clearly understood hefore the mathenntical theory of
sampline con assume r eoncrete mesnine. It is important t2 nctice that theé
irvisrtion of n quantity from the srithnetic nesn is rosnrded ns on error of
ncasurenent nmninly for purposes of terninolcay.  In the theory of errors the
devirtion of n measurcrient frem its ‘expected value nctually is an error »f
ncasureitent. When the terminolory of error theory is spplied to =enersl
sempline problems, 1t is convenlent to recerd devintions from means as errors
>f neasurcment becausc such devintions have oroperties analogous tc errors of
neasurement. Fer example, whon the devistion of a county cctton yicld frenm
the State avercse is cnlled an error of meosurenent, this does nct imnly that
the cotton yicld for the county was tetermined inaccurately, Cnlling such a
deviaticn an error ¢f mersurcment refeors only to the mccuracy with which the
cetton yield for that one county represents the avers.ce vield for the entire
Stete. In thnt sense, the devintion is an crror of mensurenent ever thougsh
the yield for tha county was determined accurately.
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Exercise 3. - The follewin. teble slves the data frum which figure 1 wns
constructed excert that each meessurement within 2 cless
intervnl 1s assumed to have s value egual to tha midpeint
of the class intcrval,

Yield per acre of cctten in Arkensss bWy counties,

13939
Yield jser scre Yumber of ccunties’
(Pounds)

50 4

150 13
250 40
350 11
450 : - B

550 , 1

75

(a) Compute the nrithmetic meen.

(p) W¥hat is the suproximete vnlue of the mode?
Gonsicering the fret thet you arc dealirs with
grouped data, would you expect the wvalue of the
mode to be less than 280 or sreater than 2507
Why?

(¢) In order to fird thc median, it is convenient to
work with cunmulstive frequencies.  The cumle-
tive frequercies dorived from the . above table are
ag fcllows:

Yield jper acre Yumter of ccunties
(Pounds) (Cunulative)

0 0
1C0 4
2C0 17
300 | 57
400 68
500 74
600 75

Plet this cumulstive frequency curve on greph
paper and find the medien eraphically by estimat-
ine the yield for which tre cumulative frequency
has the valuc 37.5, Whzt kind of irnccuracices

ore present in loceting the median by this methed?
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Frequency Distridutions

The subject of frequency distributicms wos introduced ia conrseinsm wit:
the discussion of averaszes in the preceding section, but the import-oncs of the
various kinds of freauency distributions is so grest that consideradlyr mcre
aprce must be devoted to them.

» Scientific anelysis of frequency distributions dates back tc th. caplicoes

investigetions in the theory of errors. The errcrs in physical measurim ntr
were observed to form symmetrical frequency distributions with ar cxpeet.é
value of zero. In such measurements onc could reasonebly cxpect errors ir b
two directions to counterbalance each other. The frequency of occurrencs a7
messurcment of o given size wes found to decreorse as the departurc of thet
observed moasurcment from the expected value incrersed. Once this fect wrs
erpiricrlly estnblished, nnthemnticiens begen o search for n mathenaticnl uvaour-
tion thet would describe the reletionship between the size of an error ~nd its
frequency of occurrcnce. The result wes whet is now known as the equeticn of
the Normel Freguency Curve which is usunlly writter ir the following form:

ﬂ:%@ dx —‘-»——--—(7)

To urderstrrd this caurtion, it is nccessary to develep the poiunt 1 vwiew
frem which the netherrticsl snrlysis of frequency distributions is conducted.
It ie impessible to discuss the methemrtics invelved without ~ working know-
icdgce of tho cnleulus, but tic fundoment~l principles rre sinple »nd cern be
discussed in nonmothensticrl lrngunge.

The first important polfit tc¢ berr in mind is that mrthemesticions prefor t
axpress frequencics in terms of arees. In figure 1, for exenple, the number
5f counties whose cotton ylelds frll within any one cless intcrval is repre-
sentcd by the ~reon of the rectanglo having thet clnss interval es » brsc. This
is why the chart wrs drawn in thrt particular way. The verticel scelc is not
shcwn on thet chert, but if it were, it would heve to be grrdurted in such
units thet the sum of the sreas ¢f all six rectoangles wculd be equel to the
total number of counties in the Strmte, which is 75. Any nathenntical equati:a
thrt is uscd to represcnt » freoquency distribution rust embody the same ider.
The number ¢f messurements in a prrticulsr clnss intervel must be represented
by an nrer. Bquaticn (7) sntisfies this condition and the way in whickh it ie
accorplished is shown grephicelly in figure 2.

The smooth bell-sheped curve in figure 2 is the graph of the expressicn

- 2 .
0 5‘3‘?2(1‘”) . It should be noted thrt the highest point on thot curvs is
o/2n

reached when x is equal to ni. The shaded ~res under the curve repres.rts the
nunber of nessurcments in » cless interval of length dx, starting -t the poirst,
x. If dx is sm~1ll, thnt ares is opproximately equal tc the arer ¢f r reeot-
angle whese basc is éx rnd whese altitude is the osrdineste of the curve ~t the
neint x. Bquation (?) thus reprcsents the srea of a rectongle whose ~ltitudsc
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is the ordinate ¢f the curve at the point, x, and whose base is dx, where dx
is a smell interval. The total nupber of measurcmentas is represented by the
tctal area under the curve. This arer is the limit approached by the sum of a
large numoer of adjacent elemernts of arsa, each with a base ecquel to dx, as dx
approsches zero.

This methed of representing a frequency distridution by a methematical
equation may seém awkwerd, but it has meny edvantages from the mathematician's
point of view. These nre not discussed here. All that is required for present
purposes is an understanding of the fundomentsl princivle underlying this kind
of analysis, neamely, thet cquntions such as cgunation (7) represent the number
of neasurements, dF, that fall in the cless interval bounded by x and x + dx,
where dx is a number that can be made as small ns desired, and x can assumc any
-¥vnlue in the range. m represents the aversge or expected value °of the measure-
ments, o is a constant whose value determines how closely the mesasurements tend
to clueter esbout the expected value, and N represents the total number of
neasurements, It should be observed that the curve is symmetrical, that is,
positive deviations of measurements from the expected value occur with the same
frequency as ncgative deviations of tho game size.

The practical statistician must never forget that equation (7) is only an
empirical equation that was develsped to fit the kind of frequency distribu-~
ticn usually found by physicists and esstronomers when repeated measurenments
- were made upon a fixed gqunntity. There is no fundamentsl law from which one
could deduce the fact thet errors of meesurement should be distributed in that
particular feshion. At one timc stotisticians rcgerded the equation as a2 law
of nature for which there must be some explannrtion., No such explanation wes
ever found, but the prominence given to the equation by the eerly writers on
the subject is still hard to overcome. Scmeone once remarked thet everybody
believes in the Narmel Law: the experimenters because they think it wns proved
by mathemrtics, and the mathomaticions becsuse they think it was established
experinmentally.

All that can sctually be said for the equation is that it givee a good
approximation to many observed freauency distrihutions. The esteem in which
it wes held by the early workors has resulted in establishing the equation as
one with which everyone is now familiar, too often, unfortunately, to the
exclusicr of 211 others. Much of this popularity will doubtless Dbe permanent.
Tke comparative simplicity of the equetion mekes 1t peculisrly well sdapted to
the complex methematicrl trentment used in samplinrg theory.. _.In-addition.-the--
equation fits many observed frequency distritutions sufficiently well to make
it fairly useful in precticel werk. The distridbution of county yields of
cot,on, shown in fisure 1 for examle, is not perfectly symmetricel, yet the
Normel Curve fits it fairly well, as shown irn figure 3.

For the mary observed frequency distributions that the Nermnl Curve will
rct fit, a different nathematical expression must be invoked. For exemple, con-
sider the fraquency distribution of the 75 county cottom acreages in Arknnsas
for 1929, shown in figure 4. This distritution beers little resemblence to
the distribution of yields {fig. 1) end the Nernmel Curve would not fit it,

This illustration should be sufficient to comvince the student thet the Normel
Curve is not universally applicable. It is only one of a large number of
types of distridbutions that sre encountered in prectice. Methemntical




Figure 3. Normal curve fitted to distfibution of
county cotton yields in Arkasnssas

L ——J = one county

- Yie]_,d ‘per ‘aqre (Pounde)




equations thnt fit these dilstributions have teon availeble for some time, but
many strtieticione hsve felled tc meke much uec of them. Most textbooks om
elementary statistics ignore the sudject mnd tend to croate the impressicn that
the Normal Curve represents a sort{ of universal law,

The resder should realize thet thzre 1s no universal law governing the
shape of frequency distributione. In eny statisticel study the particulsr kind
of distribution which is at hend should be borne 4a mind, Often the neture of
the mcnsurcments enables ore to predict the kind of fregqucney distridbution that
will be obtained. When a very small physical quentity is mossured a number of
times, for example, it would obviously be impossible for large negative errors
to occur; one could not gat s measurement smeller than gero. But errora in the
other direction would not be sudbjoct to a similar restriction. Such situations
tend to produce frequency distridbutions similer to the one shown in figure 3.
"Distridutions of this kind are often encountered. in practice hecause of some
restricticon in the range within which the mérsurements rrd permitted tc occur.

A striking exemple of the effect of such restrictions upon the sheje of 2
frequency distribution may be found in the distributions of percentages which
are linited to a range extending from O to 100, When the average percentage
- is less then 50, the mode of the distribvution will often be to the left of the
midpoint of the range. The frequency curve will tend to have & long tail
extending to the right. When the average percentage is exactly 50, the mode
of the distribution will tend to be at the midpoint of the range and the dis-
tribution will be symmetrical. When the aversge percontage is grester than
50, the mode of the distribution will ¢end toward the right of the midpoint
of the range and the curve will have a long tail extending to the left.,

All throe of these possibilities are fllustrated in figure 5. In this
figure the curve A illustrates the cage in which the average percentage is
less than 50, curve B, when the average percentage is exactly 50, and cutrve C,
when the average percentage is greater then 6§0. The Normal Curve would give a
good spproximation to curve B, the principle difference between the two being
that the Normal Curve extends over an unlimited range in both directions,
whereas curve B extendes only over the range, 0 to 100. The amount by which
the aversge deviates from the midpoint of the range determines the extent of
the resulting skewness in tho frequency distribution. Thc skewness becomes
more and more noticeedle ns the aversge comes closcr to one of the extremities
of the range.

Relations like those Just described are a useful gulde in predicting the
type of distridbution that is likely to be encountered in a practical sampling
problem, slthough the rule is by ne means infellible., The cotton yilelds shown
in figure 1, for cxample, form an almost symmetricnl frequency distribution
even though the ronge ir restricted to the extent that no county car have a

~yield less than zoro.

At one time statisticians tried to justify the uese of the Normal Curve in
most sampling problems. The Normal Curve will ususlly fit most types of fre-
quency distributions fairly well over the importnnt part of the range that
includes the bulk of the observations. In recont yesrs there hee been a ten-
dency to make greater use of the exrct msthematical curves which are appro-
priate to the particular problem at hnnd. Such curves will fit the observed




Figure 4. Frequency distribution of county cotton
acreages in Arkansas
- (U. S, Census, 1940)
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distridbutions cver the entirec rarge. Altkoush long available, such curves

have not been widely used. The mathenatical difficulties encountered in using
such equations are usually greater than those encountered with the Normal Curve,
but considerable progress hrns bsen made in overcoming these difficulties.

Much remains to be done in.this field, however, and it is probable that
statisticians will be inclined to use the Norm~l Curve when there is the
slightest justification or excuse for doing so. For some purposes the use of
the Normal Curve probably leads to no serious error. This point will be dis-
cussed later. The important thing to besr in mind at this stage is that there
are meny types of frequency distributions and that the Normsl Curve is only one
of many that are met in practice. The Normal Curve is better known then the
-cthers mainly because it has been given more publicity and more intensive study.
The readsr should not be misled into thinking that the prestige it enjoys repre-
sents any Justificatior for using it in preference ts all others, When it is
used in preference to other possible curves, the reascn is usually a matter of
convenience ranther than deep-seated mathematical theory.

Exercise 4, - The average size of farm irn a State is 70 scres. There
arc o~ number of farme larger than 300 scres, the largest
fzrm having 423 ncres. Make a rough sketch of the fre-
quency distribution of ferm size that you would expect
to obtein for that Stete end explein why you would expect
such o distribution. Where would you expect the mode to
he?

Exercise 5. - Records of egg production are kept on a large flock of
hens for 10 days and the numher of cggs laid during this
period is receorded. The averege number of eggs per hen
for the 10-day period was fcund tc be 8. Sketch the fre-
quoncy (istributicn you would expect to get 1f the egg
production of each hen were tabulated separately end the
resulting dnte were used to plot the frequency distribu-~
tion. Where would you expect the mode to be?

Exercige 6, -~ A thernometer used in measuring a large number of tem~
peratures was tested and found to read 1.5 degrees too
high. What effect would this error heve on the result-
ing frequency distritution of tempcratures?

Bxercise 7. - A number of corn ylelds were multiplied by the same
correction fector to reduce them to a moisture-free
Losis. What effect wonld this correction have on the
shape of the frequency distribution and on the average
rield?



Figure 5. Frequency distridutions of porcontago-.
showing effect of restricted range

A} Average less than 50 percent
B: Average equal to 850 percent
¢ Average greater than 50 perceat

Sige of measurement (Percent)
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Measurement of Varistion

The preceding discussion of frequency curves has acquainted the reader
with the kind of verisbility that is encountered in obeserved data. From the
strndpcint of sampling work, this varia*»ility gives an iniication of the relia-
tility of any one measurement as sn estimnte of the true <1 expocted velue of
the quontity measured. One could obtein & fairly atequate opinion of the
dagree of reliability of any one mensuremant by merely looking at the frequency
digtribution of the measurcments, but statisticiasns like %o expreess 1t by a
number. The number that is commonly used to represent tho amount of wariabi-
lity in a set of mensurements is the square root of the average of tha squaves

of the deviations of the measurements from the arithmetic wesap Jor thoe popula-
" tion, It is represented by the symhol o, and its definition can be exnressed

hy the followirg equation,
N
= ﬁ s (Xi. b m)z »
Ni=1 (8)

in which the Xj represents the individual measurenents, m represents the arith-
metic mean of X3, and N represents the number of measurcments. This is the

definition ordinarily gziven in elementary textbosks, although 1t is not gen-

ersl enough to fit 1l kinds of data. To bo rigorously correct, one should
define o as the square root of the expected valus of the square of the devia-
tion of an individual memsurement from the truc mcen. Equation (8) gives this
expecte® value for a finite population of N independent measurements. For
other kinds of data the relatlonship is more complicated, but the simple defi-
nition given sbove is adequate for the present discussion, and there is no
need to confuse the resder with more complicatéd formulas. Equation (8) 1is
cften abhreviated into the form,

/ S(X - '1)2

which is identicsl with equation (8) except that the subscripts are omitted.
The equetion is also frequently written in the form. '

VNS
= [/ =8(x)
¢ /N ... (10)

in which each value of x represents the deviation of a nessurement from the
arithnetic mean rather then the measurement itself.

This particular measure of veriahility was origzinally chosen by statis-
ticians because it sppears as an important constant in ‘the equation of the
¥ornmal Frequency Curve. When applied to Normal distributions, it seems to be
the most natural one to use. It was adopted at a time when statisticlans were
concerned primerily with the Normal Curve. It was given the name Stendard
Deviztion by many stntisticiang, although those who were interested in error
thecry referred to it as the Standard Error of a measurement. The latter teormi-
nclogy scems preferable because it emphesizes that & measureoment is on gstinmate




Figure 6. Relation of the standard error to the Normal
Curvse
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of en expected velue ené thot the deviaticn of a mensurement from its expected
ve.lue should be intcerpreted as an error in meesurement. At present some sta-
tisticians have ndopted the convertion cf using Standsrd Devistion when refer~
ring to the veriability cf individuel msespurements snd Standard Error when
referring tc the verisbility of the mesns of seversl measurements. The reader
who is already sccustomed to this kind of termirslogy will doubtless wish to
retein it, but such a distinetion seems unnecessary. There is no fundamental
difference ir viewpoint when discussing the veriatility of means as compared
with the veriability of individurl measurements, When different names are
used, some readers mey infer thet the voriebility cf mcans is interpreted
differently then the veriability of individunl messurements. Nothing could be
farther from the truth because the variadbility of meens bears the same relation
to the frequency distfibuticn of suck nesns ew-the variability of individual
measurements “ears tc the frequency distritusion of individusl neasurcments.
In the present work the terminology of error theory 1s given preference.
Standerd Brror is used to designate the variability of individual measurements
and the veriability of means. Wken distinctions sre neccssary, the former
will be called thc Stgndard Error of ar Individval Measurement snd the latter
will be called the Standerd Error of g Mean.

Although the stendard deviation, or standard error, hasd its crigin in
connection with the Normal Curve, its field of application has been extended _
until it is now recognized as a gencral messure of variability, regerdless of .
the shape of frequency distribution to vhich it is applied. The reeder must
remember that it hes some special interpreotaticns when it is applied %o the
Normal Curve, however. One of these i®s illustrate) in figure 6, which shows
thot the two ordinates of the Normal furve, erected ot the values of x whose-
distance from the arithmetic mean is eguel to o, intersect the curve at its
steepest points. This is true only of the Kormel Curve. In addition, the
sres under the curve included betwepn these two ordisates is abnut 68 percent
of tke total. This also is true only for the Normal Gurve. ‘

At one time, statisticians were muck interested in a similar, dbut shorter,
range that would include only 50 percent of the total aren under the curve
instead of 68 percent. That renge was obtnined by laying off a distance of
abcut 0.67450 on esch side of the meen. The quantity, G.67450, was called the
Probeble Error. It wes widely used as a measure of variability at the height
of its populerity, tut the standard error is more conven:ent to use and serves
the same purpose. For this reason, the probable error is now seldom used by
statisticians ~nd nothing of velue would be lost if it were discarded entirely.

A range that has become exeeedingly important in reecent years is that
defined by laying of a distance equal to 1.960 on each gide of the mean. That
range includes 95 percent of the total area under the curve and has been gen-
erally adopted as the renge within whichk one would expect a measurenent to fall
under conditions of random sampling. Theoretically, only 95 percent of the
measurements are expected to fa2ll within that range, but this figure has becn
arbitrarily adopted to represent the bulk of the data. The relation of this
range to the Normal Curvc is shown in figure 7.

A more exact relationship between the standard error and the length of the
renge within which measurements are expected to fnll has also been developed by
statisticirne. It can be used to make a rough estimate of the size of the




Figure 7. Normal Frequency Curve, showing range that
includes 95 percent of the area under the
A curve
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stendard error from the difference between the largest and the smallest measure-
ment in any given sct of dote., The difference betweon the largest and smallest
neasurement is approximstoly ecqual to a known multiple of 6. The size of the
nultiplier changes as the total number of measurements changes because a worker
is more likely tc get both extremely lerge and extremely small measurements in
one sample when the sample is large than when it is small. Table 1 gives the
numerical vslue. of the nultiplier for semples of different sizes. This teble

is part of a more detailed table of the same kind given by Snedecor l/.

Table 1. -~ Ratio of range to standerd error for semples of different sizes

| Ratioc of Range to

Size of srmple Standard Brror

5 2.33
10 3.08
15 .47
20 . 3.73
25 3.93
30 4.09
50 4.50

100 5.02
150 5,320
200 5.49
300 5.76
400 5.94
500 6.07
200 - 5.29
1000 | 6.48

The county cotton ylelds for Arkensas, used in constructing figure 1, may
be used to illustreote the application of table 1 to a specific problem. The
standard error, computed from the original datsn, is 89 pounds. The largest
yield 1s 545 pounds per acre, =nd the smsllest is 169 pounds per acre, giving
a range of 376 pounds. For 75 observations the ratio of the range to the
standard error is about 4.8. The eatimate of the standard error, derived from

the range, 1is 376 or 78 pounds, which dces not differ-greatly from the exact

4.8
value of 89 pounds. It is evident thnt the range~ratic method provides a
simple and accurate check that is very useful to the practicel statisticisn,
For some purposes the spproxirate method of estimating the standard error from
the range will be useful by itself. If only an approximate value is needed,
such en estimate has much to recommend it becausec it can be computed so
ensily.

It is importent to remember that the relations Just described are true
only for the Normel Curve. If the frequency distribution involved in a

- e e Em E wm EE am e e Em MR ek M es Wt e W e e e me WA em W e Me e = e w s W wWm me e e o an e

Snedecor, G. W. 1940. Statistical Methods eopplied to Experiments in Agricul-
ture and Biology, Béd. 3, Collegiatc Press, Ames, Iowa. 422pp., illus.
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particular problem is not Normal, the shape of the distribution must be con-
sidered when a specific interpretation is to be assigned to the standard error,
Tris is often overlooked. So long as the frequency distributions are approxi-
nately Normal, no serious errcr is likely to be made, but if the departure from
normallty is merked, the error may bYe ccnsiderable.

Sanples and Populations

By this time, tke resder should be familiar with tke general behavior of
neasurénents. When many neasurements are mace on a physical quantity, or any
other quantity or phenomenon that lends itself to measurercnt, three funda-
nental concepts should be borne in mind, ' First there is the concept 2f an
exbected value. This is the true value of the quantity measured, and if the
measurenents are properly made, it is the value that the average of the
measurements will approach as the number of meassurements is increased. Each
individunl measurement is on gStimatg of the expect.’ ralue. Tne average of
a number of measurements is also an estirm te of the <xpected value, supposs
edly a hetter estimete thon the result of a single nzasurecmens. The average
of a nurber of meessurenents actuelly is a bYetter estimate than a single
neasurerment in the sense that it is mcre likely to Te close to the expected
value. The rerder must remember, however, that the mean of » number of
neasurements will not alyars be closer to the expectel valve than scme indi-
vidurl measurements. Seccond, there is the concent ¢f variahility in the
neasurements, for messurements are subject to error. - The nsiurc of the
measurercents has some effcect on the kinéd of errors that sre likely to be made.
This brings up the third concept -~ that of a freguency distribution of errors
of measurement, or what amcunts tc the ssme thing, a frequency distritution of
the cbserved mensurements. ZErrors of measurement tend to be distributed ac-
cording to a frequency curve whose general shape is not constent for all types
of neasurements. The spproximate shape of the frequency distribution likely
to be found in any particuler problem can cften be predicted from a knowledge
of the noture of the measurenent, dut this is not always possible. Experience
is the best guide.

All three of thcee concepts rre impertant in sampling work. The first is
inportant fron the point of view of actually obteaining on estinate of the true
veluce of the quentity measured. The second ond third are involved in drawing
conclusions ir regard tc the saccuracy of the estimate.

As stated previously, & single measurement is an estimate of the true
value of the quantity measurel. The averrge of several nessurements is a
better estimate. The average cf o lerger rumber of measurements is a still
better estinate. Usually a set of one cr morc measurenents represents only a
samnle of all possibvle measurements that might be made cn the same quantity.
The set of £ll possible mersuremcnts that might be made is c»alled the universe
oF povulstion from which the sammle is tnken. In measuring the area cf a
wheat field, there is no limit to the number of times that area could de
measurec. In such cases, the universe or populertion of measurements is un-
limited cr infinite. But if one were interested in the average number of
kernels of wheat ver nlant in thet field, the situation would be different. In
that case, each individual measurcment would be thc nunber of kernels of wheat
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on an individunl plant. The waximum nuber 21 such measnrements that can be
taken is limited to the number of plants ir the field. Such a population is
called finite. OFten a finite population msy itself b¢ regarded as a sample
from some infinite porulation. As o matter of fact, such a ccncept provides
the foundation for the mathematical analysis ¢f samples from firnite populaticns
that is discussed later in this work. In the case of the wheat field just men-
tioned, the average number cf kernels per plant in the field can be treated
from two viewpoints. If one is interested only in the average number of ker-
nels per vlant in thot cne ficid, the populsticn is finite. On the other hand,
cne might be interested in an unlimited numbder of figlds of thet kirnd. From
that viowpoint, tiie one field studied is itself o sample of an infinlte popu-
intion and arny sample of wheat from the field could be regnrded ns o snmple
from the same infirnite populstion.

ost of the classieal thiory of samplirg has daveloped from the viewpoint
ot sempling from infinite pogulaticne., This wnoint of viow is entirely appro-
prisrte in a large number, perkaps the majority, of practicel problems with-
waich the statistician hes to deal. On the ‘other hond, there sre spceial types
of problems in whkich that theory 1s hardly sdequote. Much of the sampline work -
ir sgriculturel statistics comes under this clessification. Fortunntely, the
modifications thet rmust be mede in the clnscical theory to adrpt it to finite
populations arc nct complicsted and the tronsitior esn be -irde without diffi-
culty. .

Perheps the nost striking feature of : finite populrticn is the foct that
the true value of the quantity measured cnn qlvpyc be obtsained if one is will-
ing to assume the labor of meking all possible mecsurements. In th: exsmple
mentioned previously, it would be possible to count the kevnels of wheat on
every plart in the field. The sversge number per plart could thus be ascer-
trined for trat field witkcut errer. Infinite populrticrs do rnit hove this
property. The ares of the whert field could be nmensured an often as desired.
Each additionel mensurenment would incremse the stetisticol procisicn of the
estimate of that ares, tut ne~ ce:ld never be certain that he had computed the
true area. ,

The term gtatistical precisi:n shronld be noted carefully. The fact thot
one gample is larger than arcther frum the ssame population does not imply thn
the average obtained from the larger cnmgple is necessarily closer to the true
value than the average computed from the smaller semple. It implies only that
the averege for the larger sample hes a greater chance of being close 0 tie
trie value than does the average Tor the smoller sample.

This automaticelly introduces the subject of sompling errors in averages,
¥When somples are drewn from either an infinite or a finite populaticn, it is
gerncrally known thot the aversge of a lerge sample is mere likely to be close
to the true vrlue than is the average of 2 smaller sample. The averages for
repeated samples of the same size will fluctuate from sample tc sample, but
tiils fluctumrtion will tend teo become emaller as the size of the samples is
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increased. If semples from an infinite population are tnken at random, that
is, in such a way that each measurement in the population has on equal change
¢f being included in every sample, there is o simple relstionship between the
standard error of the sverage of a nunber of measurements and the standard
errcr of a single neasurenent.

x /o
In equation (11), o represents the standard error of a single measurement, n
represents the number of measurements used in computing the aversge, and c;

represente the standnrd error of the aversge. The subscript, T 1is used in~

stead of m t0 ropresent the average so that one may distinguish between the
semple sverages end the true or populaticn value. This device is used often
in the following pages of this worlk.

The stendard error of an average bears the srme relation t¢ the frequency
distribution of suck aversges as.the stnndard error of a single measurement
bears tu the frequency distribution of individual measurements. If a large
rnunber of samples were drewn at random frem an infinite population, cne could
compute the standard error of an average for samples of that size by means cf
equation (10). The interecsting feature of equation (11) is the fact that it
furnishes a method ¢f computing the standrrd error of an avernge withcut first
actually comsuting o number of such aversges. All thet is required is a know-
ledge of the size of the sample and the stenéard error of a single measurenent.

If one is dealing with a finite pepulstican instes@ of ar infinite popula-
tion, the formule for computing the stendard error of an average becones

O o N ~-n

- (12)

ir whkick n is the number of meassurements in thc somple and N is the number of
measuremcnts in the entire nopulntion.

' Equation (12) differs from equation (11) only with the respect to the

factor /N § n. This factos is necdod because the standard errcr of an aver-
age is smaller when the sanle is taken from a finite pcpulation than when it
is taken from an infinite population, other things being equal. If the size
of the sample is small in relntion to tho size of the population, this correc-
tion is so small as to be unimportant. The correction becomes increasingly
important as the size cf the samnle is incrensed. The limiting case is reached
when the samnle is so large that it includes the entire population, that is,
when n = N, In this case, the factcr reduces tc zero snd the standard error
of the averace, computed from-éjuation (12), will aiso be equal to zero. This
is perfectly logical because the true average of the entire population is
estimated without error when the sample includes the entire population. The
averages for repeated samples of the srme size would recessarily heve to be
equal to each other.
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Exercise 8. - Supjpose thot there are 1000 wheat flelds with an averesge area
of 25 ncres in a county. The area of cach field crn be re-
grrded as an estimate of this figure. The standard deviation
of the areas of the individual fields is 15 acres. What for-
nula shculd you use in compnting the standard error of the
averaze acreage thet would he obtaineéd for samples of the fol-
lowing sizes:

(a) 10 fields?
(b) 100 fields?
(¢) 900 fields?

Compute the standard error of the aversge for onch of these
samples, first by equation (11) and then by equaticn (12),
and explain the differences in the results. Draw a rcugh
sketch showing how the frequency distribution of averages
from repeated semples of each size should look if the dis~
trivution of individual flield =reas 1s Normal and indicate
the range that would include 68 percent of the sample aver-
- agos in esch case, ’

Unbiosed Tstimntes

The theory of sampling is impcortant because the orly informsticn that can
be obtained ahout a population must usuelly be besed or a study of samples
from that populaticn., If the population is infinite, there is no possible
alternative. In the case ¢f finite ponulations, it is theoretically possible
to make & study of the entire population, but suck arn extensive study is sel-
don practicable. If one wishcd to learn the aversge number of kernels of
wheat per m»lant in a field, there is little likelihood that he wculd count the
kernsls on every plant in the field. The logical procedure would be to take
a sauple of plants from that field and count the kernels of wheat on those
plents only. The average number of kernels per plant in the sample would
serve as an estimate of the average number cf kernels per plant -for the entire
field. If this estimate is to serve its purpcse, it must be an unbiased esti-
mete. Bias in an estimate refers to a consistent tendency to underestimate or
overestimate the quantity that is being messured. Such errors will always
tend to be in the same direction from sample to semple, sc that they will not
counterbalance each other. ZErrors of this kind are the most troublesome ones
with which the statistician has to desal tecause thoy will not "average out."
Bias can arise from two sources: (1) an improperly Crawn sample or (2) in-
proper methods of computaticn. The two are distinet and nmust be discussed
separately.

So far as the character of the somple itself 1s corcerned, there is con-
siderable misunderstanding in regsard to what cconstitutes a properly drawn
semple. Assuming for the present that the computations performed on the
sanple are all that they should be, a semple will give sn unhiased estimnte if
it 1s drawn in such a way that the nvernge of estimetes based on all possible
samples of that kind is equal to the true velue of the quantity measured.
Samples can be teken in many different ways »nd still serticsfy this requirement,
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A random sample -~ that is, a sample such that every measurement in the popu-
lation has an equal chence of being included -~ will give an unbiased estimate,
but it is by no meens the cnly kind of sample that has this property. 4 study
of the properties of o random semple provides a good introcduction to the sud-
Ject, heweveor.

The frequency distribution of srithmetic means under conditions of random
sanpling was menticned in the preceding section. An arithmetic mesn, computed
from a random shmple, 1s an unbilased estimate of the true population value be-
cause the average of such estimates, computed from all possible random samples,
is equel to the true populmtion value. This is the cese, regarCless ¢f the
kind of frequency distribution exhibited by the messurements in the population
from which the samples are drawn.

Figure 8 shows an example ¢f the relaticn Yetween the freguency distribu-
tiorn of individual measurements and the frequency distritution of averages for
random sanmples ¢f different sizes when the frequency distribution of individual
measurements is not Normal. Curve A is the frequency distribution of indivis -
dual measurements for the entire population. Curve B is the frequency distri-
bution of averages for all possidle rardom samples of 10 measurements each.
Curve C is the frequency cistributiocn of averages for all possible random
samples of 30 merssurements cach.

All three distributions have the seme arithmetic mean and that arithmetic
nean is the arithmetic mean of all mensurcoments in the population. It should
be- observed that the standnrd orror of the averages is smaller than the standard
error of the individual measurerments, as pointed cut in the preceding section.
Ir additicn, the resder should notice perticularly that the frequency distri~
bution of the averages becomes nore symmetrical as the size of samples in~
creases. For all nracticel purposes, curve C can be regarded as a Normal dis-
tribution, This is an aimost universal.property of the frequency dlstributions
of averages ond expleins why most practicel statisticians do not show much con-
cern about the shape of the frequency dlstrivutions of the individual measure-
ments with which they =re working. One is usually more interested in the vari-
ability of averages thon in the variability of the individual measurements,
and if the srmples are falrly large, no serious error is introduced by assum-
ing that the distribution of the averages is Normal.

Although a random semple from s population will yield an unblased estimate
of the population average, i1t will not recessarily provide an accuratec estimate.
If the individual measurdments show a large smount of variadility, the averages
from random samples will also have large standard errors unless the semples are
very large. Research workers have long been sware of this and have sought to
overcome the difficulty by usinz judgement in selecting the samples. If some-
thing is kmown about the nature cf the population from which semplecs are to be
drawn, e worker can often control the sampling in such a way that each sample
is more reprcsentative of the population than a random sample is likely to be.
Such schenes can be successful, but they must be used with caution decause
buman judgsement is nct infallible. The investigetor may unconsciously intro-
duce & bias into his results through an error in deciding what is representa-
tive of the population. When such centrcl cen be properly exercised, however,
the results are well worth the effort. This subject is of the utmost impor-
tance to the practical statistician and 1s discussed later in a separate
section.
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The second source of bias, improper meth ods of computaticn, is harder to
visualize. The reader should not conclude that "improper mcthods of computa-
ticn" refers only to mistskes in arithmetic. The roots of the nroblem g0 much
deeper. By definition, an unblased estimate must be such that the average of
estimntes; based on all possible samples of the kind drawn, will be equal to
the true value of ths quantity measured in the population. This definition
may be ccndensed into the statemont that the expected value of the estimate
nust te equal to the true value ¢f the quantity measured.

If the samples are properly drawn, the averaze of the arithmetic means
derived from all possible spmples will be equal to the true arithmetic mean
for the entire population. This is not true for all stntistical constants.,
The most familiar exception is the case of the standard deviation or standard
error. Equation (8) defines ‘the standard error of sn individual observation
as the square root of the arithmetic mean of the squares of the deviations of
the individusl neasurements from the arithmetic mean for the entire popula-
tion., One might suppose that the corresponding formula for computing an esti-
mate of the stmndard error from a sample should be,

The symbol s is used instead of o to distinzuish the estimate from the true
value Just as X wus substituted for m tc distinguish the estimated arithmetic
mean from the true value for the population. If wvalues ¢f s were computed for
- all possible rnndon semples of size n thet could be drawn from the population,
the average, s, of these estimates would not be equal to the nopulation value,
o. The bias would be fairly larce when n is,small, nlthouzh it would decrease
as the sizo of the samples was increased. If the somples were drawn from an
infinite population, n would have to be infinitely large before the bias would
disa;pear entirely, however. .

The smount ¢f the bias can be computed by the following equation,
F7 :
- n
= /2! “')

The numerical -velue of the expression on the right-hand side of equation (14)
is difficult tc cormute, but tables that give its velue for different values
of n have been prepared. Talhle 2 presents vnlues of -the ratio s/c for a few
valuew of n and gives some idea of thc amount of the bias f57 samﬁles of
different size. A more complete table is given by Shewhart=
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Shewhart, W. A. 1931, Econcmic control of Quality cf Menufactured Product.
Van Nostrand, New York. 501 pp., illus. .
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Table 2. ~ Values of the ratio'g/o for different values of n

( n ' g/o
5 . 0.776

10 .854

15 . 931

20 * .949

25 .959

30 . 966

35 971

40 . 975

45 .978

50 .98Q

60 ©2983

. 70 . 986
- 80 +987
90 .989
100. : : . 990

Tgble 2 shows that the average of the estimated standard errors derived
from the samples is consistently smaller than tHe true value for the popula-
tion. This bias could be eliminated by multiplying each value of s obtained
from a sample by a correction factor. This factor would be the reciprocal of
the ratio §/0 corresponding to the appropriate value of n. At first glance,
this would appear to be a simple method of overcoming the difficulty at hand,
but when one probes more deeply into the fundemental theory cof statisties, 1t
is evident that the problem requires a more therough study.

For example, suppose one were interested in getting an estimate of 02
rother than o. The computations wenld be the same except that the extration

of the square root would be eliminated. The estimate of 02 would be given by
the equation,

The average of all estimates cof 52 would be smaller thnn 02, just as the aver-
age of 21l estimates of & would be smeller then o, but the dias would be dif-

ferent. The relation between 02

and the everage of all pcssible values of 82
is given in the eguaticn, :

2 2

The biss in s° could be removed by multiplying eech value of s

b , bat
v 1

n -
. the resulting unbilased estimate of o® would not be equal to the square Jf the
unbiassed estimate of o discussed previously.
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Cne would thus te confrented with the prradox of an unbinsed estimate of
o and an unbinsed estimate of 02 with the latter nct equal to the square of the
former., This-should convince the render that the problem of computing unbissed
estinetes requires careful thought. A comprehensive discussion of this subject
cannot te attempted here. But it cesn_bec said thet most mathenaticians prefer
tc compute the unbirsed estinate of o and to use the square root of the result
as the best estimate of o that can be obtained. Mony statisticians have now
adopted this concept tc the extent of re-defining the standard error as follows:

/n 2

This estimate of o is known as the optipum estimate and will be used exclu-
sively in the present work. Some statisticiens object to this as a definition
c¢f the stendard error, but it possessos mony sdvsntages in discussions of sampl-
ing problems and hers been rather generally accepted in recent years.

So for as biss is concerned, the estinmnte of o given by equation (17) is
o blased cstimnte, but it so heppers thet a worker is usually more interested
in having an unbiased estimate of cz‘than an unbisged estiriate of o. The
. sauare of thc optirun estimpte of ¢ will be an untlased estimate of o°. The
use of n -~ 1 as a divisor illustrates an cpplication of what is known as the
concept of degrees of freedom. The above definition of the standard error is
sonetines ¢rlled an estinste based on n-1 degrees of freedom. This expression
is used often in the following poges and it is well to become familiar with it,

The ebove illustrertions servo as an introduction to the problem of ob- -
taining unbiascd estimates from one or nore samples taken from the population
in question. The nature of the problem should be fully understood by every
statistician, whatever his field cf activity may be. Further discussions of
this kind in thesc pages will deal largely with the problem of obtaining un-
biased estimantes of arithmetic nmesnns; in that subject one is not eoncerned
with bias caused by improper methcds of ccmputation in the sense with which
the term is used here. Much use will be made of unbiased estimates of squared
standnrd errors. The discuscsior just concluded should bve sufficient to pre-
parce the resder to follocw these applications of the concept of unbiased esti-
mates without further elsboraticn.
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Concept of Probahility

To most laymen the werd "prodability" implies some sort of vague statement
that must be made whencver the abscnce of specific information nrevents the
reaching of & definitc conclusion., If the statistician were restrictecd to such
a ccncept, there could be no so-called "mathemsticel theory" of probability.
Mathenatics can be epplied only to a concept of probebility that lernds 1tself
to messurement. Any definition that is to Ve cf practical use t2 the statis-
ticisn must be expressel in that kind of languoge.

The concept of nmrobability thet 1s most cormonly used, at present, has
proved to be useful and has beer adopted by the great majority of statisticians.
Under that concept, probatility is definod ~s the relative froquency with which
en event is cxpecied tc occur in a number of trials. The realer shoul? renlize
ot once that, under this definitisn, the true pro'ahility of the occurrence of
an cvent may not be known but must be esti-ated from observed date. For
example, if cne is dealing with the areas of a number of wheat fields and finds
that 10 percent of pll flelds measured have an arcn of 25 acres, the prodabile
ity of getting a field with an aren of 25 acres woulé be estimated as 0.1. If
this estirate were tased on a study of all wheat fields in the population, it .
would represent the true probability of getting a 25-acre fileld. If the esti-
rnate wore based on only a sample of all wheet fields in the population, one
would have only an estimete of the protability of getting a 25-acre field. In
such » situation one would have to adrit that the truc probability of getting
a 25-acre field was not known, but that it hns been estinated to be O.1l.

The resder should not be unduly disturbed to learn that the true proba-
%ility of occurronce of an event ney not alwoys be known in prnctice. Esti-
metes derived from observed data arc usually sufficient for practical purposes.
The concept of an expected value of such an estimate is of interest nmainly in
academic discussions of the theory. ' ’ '

As protahility has been defined in terrs of frequency of occurrence of an
event, it should te ¢vident thet prohability theory is intinately asscciated
with the thecry of frequency distridutions. In the previous discussicn of fre-
quency curves, it w=s pointed out that mathenaticians custonarily represent
frequencles by areas under a fregquency curve. In figure 2, for example, the
shnded nrea, dF, represented the nunber of neasurements felling in the class
intervel boundeld ty x and x + dx whken the measurements are distributed accord-
ing tc the Normal Law. The same curve could casily be constructed on such a
scale that the total area under the curve would be equal to uniiy instead of
representing the total number of measurements. The curve would have the samne
goneral shape, but the shaded ares, dF, would then represent the fraction,
rather than the number, of messurements ferlling in the interval bounded by x
and x + dx. By defirition, the ares, &F, would thus represent the probability
that a measurement will fall within: the intervel btounded by x and x + dx.,

In the present work, the reader will have meny occasiocne to make use of
the concept of prristility as ocutlined ebove. He should always be ahle to
interpret probnLility sta: ments in terns of frequency distributions. When-
ever & prohability stetemert is encountercd thet does not lend itself to such
sn intervretation, he can be sure that the statcnent was not properly made.
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In this publication, prohabtility mesns relative frequency, and that definition
should be kept in mind ot 211 times.

Exercise 8. -~ In a Normal frequency distridution, 68 percent of the measure-
ments should fall within the ronge bounded Dy m - g and m + ©
where m is the arithmetic mean for the entire population and o
is the standard error. Express this fact in terms of probadi-
lity instead of frequency. )

Excrcise 10.~ If measurcments are distributed according to the Normal law,
what 1is the prohobility thnt a measurement will fall within
" the range bounded by m - 1,960 and m + 1.9607 Whet is the
probability that a measurcment will fall outside of this
range? .

Exercise 11.~ What is the nrobebility that a measﬁremant will fall within
' the ranges bounded by the following velues, assuning a Normal
frequency distribution in each case:

(a) mond m+ of

(b) m -~ o and n?

{c) me<'cend'n+ 1.9607
(3) nondm+ =7

(2) n -0 ondm+ =

(f) m+ o0 ond n + =7

(g) n-~o0andm~ ot

(h) m+oandnp-o1?
(i) - @ and + «?

(3) m+ 1,960 and nn + =
(k) m = 1.960 snd n + «?
(1) m -~ 1.%60 and m ~ =7

! ® {a 1 ' gsent inTinity in bocks on math-
%%it§£§301 n %ﬁi:sgieggigg?ri © mears an unimited distance
to the left. + * rmicans an unlinited distance to the right.
m + ® means to start at the peint m and move to the right
without stoppin;. m - ® means to start at the point m erd
nove to the left without stopping.




- 36 -
" Sample Means as Estimates of Population Meens

A sample is usually drawn from s population for the scle purpose of ob-
taining some infermation abcut the population. The number of characteristics
of the populaticn absosut which information is desired may be larze, dut in
almost every stntisticol investigetion, cne is intorested in estinmating the
arithnetic mean., When the sesanle has been drewn ond the arithmetic mean com-
puted from the sammle, the statistician must arrive at some coneclusion in re-~
gard to the arithmetic mean for the peopulation ms a whole. If this could not
be done, the time and effort spent on the semple would be futile. The sanple
is of interest cnly insofar =g it yields information about the jpopulaticn from
which it was drawn. In order to arrive at s-me conclusicn ahcut the mear for
the populaticn, it is necessary to compute anm estinnte of the standard error
of the swmle mean. But first cne must obtedn an estinmate of the standerd
error of a single mensurement. Abbrevinting the noteation in equstion (17)
siightly, the estirmate of the standard error of » single measuroment is

“‘/ 5(x - ®°

n -1

For ssmples drswn from an infinite Hopulation, the estimate of the stencerd
error of a semplc mean ney be written,

si':;\-]‘.;l: —m - s oo s (19)

For samples drawn from o finite populstion this quentity weuld have to be mul-

tiplied by the factor.'/I = B, as indicated previcusly.
N

It is irportant tc remember that s is only an gstimate of the standard
error of a single measurement ond s~ is, therefcre, only an gstimate of the
stendard error of the sample mern, The true stondard error of the sample mean
" is o/,/n where o is the true stondard error of a single measurement. The
numerical value of o is hardly ever known in nractice. Cne must be satisfied
with the estimate, s.

The estimnte, =1 is the only ‘statistic avnilable for drawing conclusions

about the adequacy of the sample mean as an estimate of the poﬁulation mean.
To show how it can be used in drawing such ccnclusicns, it is necessary tc re~
view the sul:ject ¢f the frequency distributions of sample means.

If random samples are drawn from a Normal populatioh with the arithmetic
mean, m, and standard error, o, the means from samples of n observations will
be Normelly distributed about m with a standard error, o2 This is equivalent

to saying that the cuantity izafiﬂl is normally distributed ahout o mean of
b3

zero with unit stenderd error. Since the value of o= is usually not avail-

able snd cne must depend upon the estimate, s_, derived from the sample, one
X




-7 -

is naturally intercsted in knowing how the quentity Lx;f—ml4ia distrivuted.

X
This quantity 1is denoted by t and its frequency distribution is now well-known.
The frequency distribution is symmetrical, but not Normal, and has a man of
zero. It epproaches the Normel Curve as a limit when n is made large -- the
difference between the two being unimportant when n is greater than about 30.
For small values of n, however, the difference is fairly large.

The difference between the t distribution and the Normal is illustrated
in figure 9 where the distributions of t for 4 and 9 degreces of freedom, cor-
responding to samples 5 nnd 10 measurements each, are shown in comparison with
the Normal Curve drawn on the same scale. The manner in which the t distribu-

"tion approaches the Normal Curve as the sample size increases can be easily
distinguished. ZEven for samples contnining only 10 measurements each, the
departure of the t distribution from the Normsl is not great. The most impor-
tant difference between the t distribution and the Normal Curve is to be found
in the arcas thet lie under the toils of these curves. The Normal curve ap-
proaches the tase iine faster than the t distribution., These arcas are par~

*ticularly important in naking statistical tests. In such tests one is much
interested in the rapze formed by laying off equnl distances of such length on
each side cf the mean th-~t the range includes 95 percent of the ares under the
frequency curve. The faster the frequency curve approachees the base line, the
shorter this range will be. Therefore, the range will have to be longer for
the t distribution than for the ¥Wormal.

For the Normal distribution of 2= B the range that includes 95 percent

°x

of the area is obtained by layine off a distance equal to about 1.96 on each
side of the nopulation mean of this quantity, which is gero. For the distribu-

tion of t, which is equal to x - B, the distance that must be laid off on each

”x

side of its mean value of zero is larger than 1.96. The distance varies with
the number of dezrees of freedom used in estimating s and si. however, and

approaches 1.96 as a limit when the number of degrees of freedom becomes large.
For the present, the student should think of the number of degrees of freedom
ss8:-being equal to one less than the number of individual measurements used in
estimating s and sg. Table 3 glves approximate values of this distance for a

few different numbers of degrecs of frecdom. More detailed tabulations may be
fourd ir published ta®les of the t distribution that are now available in nost
textbooks on statistics. The differences between the t distribution and the
Normal disajppears as the nunmber of degrees of freedom becomes large because s
and sE approach thelr population values, o and QE'



Figure 9. Distribution of t compared with Normal Curve
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Table 3.~ Distance to be lald off on each side of the mean of the t distri-
bution to include 95 percent of all possible values.

Degrees of Freedom Distance on each
aide of mean

1l 12.706

b 4,303

3 3.182

4 2.776

5 2.571

10 2.228
15 2.131
20 2.086
25 2.060
30 2.042
50 2.008
100 1.984
200 1.972
300 1.968
400 . 1.966
500 1.965
1000 ° 1,960
@ 1.960

\ 4

The t distribution is extremely useful in drawing conclusions about the
adequacy of a sample mean as an estimate of the population mean. But the way
in which it must be used requires some carcful thinking on the part of the
statistician. The reader should notice particularly that the t distribution
is formed by individual values of t, computed from scparate estimates of X and
sy for each sample. Estimates of both will vary from sample to sample. Even

if the true value of oy were known so that one could use the Normal Curve, one

would have to be careful to avoid erroneous conclusions.

The proper way to determine how well the sample mean represents the popu-
lation me an would be to compute the range extcending from x - 1.960; to

X + 1.9607. One could then state that there is a probebility of 0.95 that the
range E,i 1.960_ includes# the population'meén. m. This 1s the concept of
X

fiducial limits or confidence intervals. It implies that, if an arithmetic
mean were computed-from each of ell possible samples of the same size and a
range were computed from each by first subtracting and then adding 1.96qi to

each sample mean, 95 percent of these ranges would include the population mean,
m. This is an exact probability statement 2nd the form in which it is given
should be noted carefully because it is cften misquoted. Many otherwise reput-
ablc statisticians sometimes claim that there is a probability of 0.95 that the
"population mear, m will f21l in the intervel X + 1.9605" where x is a given

szemple mean. The fallacy in this kind of statement should be apparent at
once. Probsbility is another word for frequency and cvery probability statement
must be interpreted in terms of the frequency of occurrence of an event. In the
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present problem, the populeticn mesn, m, nust be regarded as a fixed quantity.
It is the computed range that varies from sample to sample. The only correct

statement that can be made in torms of probability must refer to the number of
times a computed range will include m.

The reader.may have some difficulty in sceing just why 95 percent of the
ranges defined above should include the population mean. That fact follows
directly from what is krown about the frequency distributions of sample aver-
ages. It 1s known that 95 percent of the samplo averages should fall within

the range, m + 1.960_ where m is the population mean. The fact that the numbre
X

icol velue of m is unknown is immaterial. Figure 10 shows that the kind of dis-
‘tributicn of averages one might obtain from rendom samples of 5 measurements,
drewn.from a Normal population with m = 15 and o = 6. The standard error, ai,
of a sample mean is 6/,/ 5 or 2.68. The solid horizontal line shows the posi-
tion of the population nean, m. The two droken lines show the renge within
which 95 percent cof the sample menns should fall. 19 of the 20 means shown in
.the chart actually are within this rsnge ag demanded by the theory.

If one lays off the distance 1.96 x 2.68 = 5.25 on each side of every one
of the 20 semple means shown in figure 10, he will obtain the 20 ranges shown
in figure 11l. The length of each cne of these ranges is equal to the distance
between the two btroken lines in figure 10. Therefore, the range about each
semple mean that falls between the two broken lines in figure 10 must cross
the solid line that represents the population mean in figure 11. The range
about the one semple mean that was outside of these linmits will not include
the population mecan. This explains why one can expect to be correct 95 percent
of the time when he concludes that thc population mean is included in the range
x + 1.960;. where X is a sample mean taken at random., Even though the value

of m is not known, one can be sure that 95 percent of all ranges defineg by
X * 1.960z will include m. It is important to remember, however, that x

varies from sample to sample and in practicc one never knows exactly which
particuler ranges will include m. All that one knows in advance is that 95
percent of them should do so.

The above illustration was simplified by assuming that the numerical value
of o= was known. exactly. This was done to present the concept of fiducial

limits or confidence intervals with as few complications as possible. In
prectice, the numorical values of o ard oz are seldon available and one must

Ye content with thid estinmetcs, s and 8= derived from samples. This naturally
raises the question of how the concept just described can be applied in prac-
tice. If one were to compute the range defined by X + 1.96&i for each sample,

these ranges would not be of the same length because the numerical value of
sz would fluctuate from sample to semple.

This is not the most serious feature of the situation, however. Tho dis-
tributicn of sample means would still be as shown in figure 10, but the )
various ranges formed by computing T + 1.969; for each sample, in addition to
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being of unequal length, would no longor include the population mean 95 percent
of the time. Too many of these ranges would be a little too short, the dis-
crepency increasing ss the number of degrees of freedom available for estimat-
ing s and 8 decreases. When the factor, 1.96, is replaced by the appropriate

value of t, as shown in table 3, this latter difficulty is corrected. ‘The
ranges of the type X * tsi will still be unequnl in length, but 95 percent of

éﬁém will include the populrtion mean, n,

In ¥ne illustration previously discussed, each e~mple consisted of five
mesrsurcments which yielded 4 degrees of freedom for estimrting s ond ox- The

value of t for the 95 percent fiducial limits corresponding to 4 degrees of
freedom given in table 3 is 2.776. If one were t0 compute the range defined
by x £ 2.7769§ for esch meen shown in figure 10, he would arrive at the situa-

tion depicted in figure 12. Of the ranges, 95 paercent include the population
mesn, as was the case in figure 11 but, interestingly enough, it is not the
some 95 percent thrt hnd this property before. This is immaterinl, however,
.becouse ali that is required is the condition that 95 percent of the ranges of
the type X b ts; will include the populstion mesn. This gives srssursnce that

‘vhen a mesn X, and its stondard error 85, hzve been computed from s glven

gsmple, there is a probsbility of 0.95 thrt the rrnge, x * te_, so established
x .
will include the population meern.

The discussion Jjust concluded indicotes the kind of probrdbility state-
ment that can be made about the ndequacy of o sample mean as an estinante of
the populrtion mean from informrtion contained in the srmple. Some stotisti-
cirns have pointed out certain limitsations in the utility of such a concept,
but attompts at irprovement have often become involved in serious contro-
versies. These nre not discussed here. Sc long 23 probnbility is defined in
terre of the freguency of occurrence of »n event, the discussicn here given
stands on a solid mathenmstical foundntion. The viewpoint that it represents
apprars toc be rs satisfactory ns anything thnt hes yet been devised.
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In recent years, the term yarisnce hos been used by statisticians more
and more frequently. Variance is defined simply as the square of the standard
error and the reader may wonder why a speci~l name hos been assigned to it.
The explanaticn is nct hard to find, however. The squared standard error is
used more frequently than the standard error itself in many problems and
statisticians foupd it cumbersome to refer continuslly to the "squared stan-
dard errcr." Yarionce is an easy worR t0 say and becomes less tirescme upon
repetition than "squared standard error." A few statisticions have gone a
step farther and have begun to use the letter Y to represent variance. This
‘has meny advantages in printing etotistical formules becsuse the use of ex-
poenents 1s avoided., 3But the student will recell thet a2 distinction was made
previously between the truc value of the standard errcr for the population as
2 whole and the estimate based upen a semple from the populaticn. The former
wns denoted by o snd the latter by a. As yet, this distincticn has not been
mede with respect tc the symbol for variance snd the student must be careful
to determinc from the cnntext whether V is being used to represent o2 or s°
in o prrticylar formula with which he may be ccnfronted. In practicalzwork.
it is becening custonmary to associate V with the estimated variance, s™,
because it is only in theoretical discuasions that onc hes any usge for the

synibol 02.

Any formula involving the standerd errcr can be written in terns of
vrriance. The cstimated variance of a single mersuronent derived from a sample
¢f n observations or n - 1 degreecs of frecedom may bde written.

The estimated verisnce ¢f o nesn based cn n‘mebsurements fron en infinite
population is

V=" e e e e e e mm = (21)

The estineted varisnce of 2 mesan based on n nessurenents from a finite popula-
~ticn containing only N measurenents 1s

=g e e '-— (22)

The student will be well-advised to become faniliar with this nctaticn
because it is used often in the present werk. It is difficult at first to
fornm a nentrl picture of verinnce as s monsure of fariadbility after cne has
been accustomed to thinking in terms of stendard errors, but this difficulty
will disappear with practice. After the verisnce notation becomes femiliar,
" its nany adventages more then compensate for the tinme and effort spent in
beconing acquainted with 1it.

One of the principnl advantages of the variance noteticn féllows from
the acditive property of variances. If » nensurement has the variance V
and a seccnd messurément has the variancc Vz, the variance of the sum of those
mensurements is given by the relation,

= V.  m e e m e e m e - -
Vo=V 4T, (23)
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The veriance ¢f tho difference between the two nmeasurements is, surprisinely,
equal tc the veriance of the sum and is written

The rclaticnships defined by equations (23) and (24) are based on the
essumption thet the twoe nessurencnts are independent. This means that, if all
poussible valucs of the first nessurencont end all possible values of the second
measurcnent werc arrayed side by side in the order in which they were taken, any
nunerical value of one mcasurement would be eanlly likely to bPe naired with a
given nunerical value ¢f tho cther. In other words, there nust be no tendency
fcr particuler velues of cne mersurement to be prired wlth particuler volues of
the other. If such a tendency exists, and this is the case more often than night
be suppescd, the relations given by equaticns (23) ~nd (24) must be medified to
nake proper nllowance fcr the offocts of this tendency. But the condition cf
independence is satisfied in a large variety of prrctical problens, and the
aethernntical relat&onships based therecn nre of fun&anental inportance in the
theory of sanplipg. ' . :

The formula for the veriance ¢f the sum cf- two quantities, as glven by =
equation (23), can be cxtended tc the case where ncre than two quantlties are
added. The veriance ¢of the sun of k messurements is

Vo =v1+va+v3+---+vk T - - = (25)

in which Vl, Vz, 3 === Vk are the roepective varinnces cf the individusl
neasurements. A sp ecial case c¢f cquetion (25) arises when the individual neasure-
rents hove the sanme variance. In thet cnse, the equation refuces tc the foen,

Vv, =KV e m i ma - (26)

in which V 18 the variance of each of the k mensurements entering into the sum.

Bquation (26) will be used often in the present work. It is needed in a
large number of practicsl problems, merticularly thcse arising when semnles are
drawn from the seme population. If measurements arc taken from the same popu~-
1ation, they will necesserily hsve the sane variance. The variance of the sum
of any number of such measurements cgn be computed fron equation (26) . Many
statisticians regard equation (26) as one of the ncst basic formulas of statis-
tics becsuse it enters into sc many nrectical sroblenms. '

The formlas relating to the va ri ances of suns end differences of indivi-
dual negcsurenents also apply to the variances of the sums and differences cf
arithnetic mesns. When the varisnce of the individunl messurecnents in a set
of nl measurenents is Vl ané the varlance of the individusl measurements in

another set ¢f n messurenents is V the vwrlances of the two means will be

1 and -2, respectively, »recvided the two samnles are drawn from infinite ponu-
n,. n
1% 2 V1 Vz
lations., The varisnce of the sum of difference of the two neang is —= + _=,
n n
1 2
The varisnce of the sun or difference of two quantities is thus given by the
sun of the variances of the quantities that are acdded or subtracted, resnrdless
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of whether thcee quentities are indivi‘url neasurenents or ~verazes of sevoral
rneasurenents. As a matter of fact, the relsationshis is even mcre genersl hecause
the varisnce cf the sum or difference cf any quentities 1s equrl t¢ the sum of
the variances of those quentitics. The quentities thrt are added cr subtracted
may he eny statisticrl constants whatever, The only necessary condition is that
those quantities be indeperdent, os previfusly ‘gtnted, ond thrt the voriances

of those quantities be known.

This discussicn is clcscd-by cslling attention tc another property cf
varisnces that is frequently very uscful and should be impressed upon the
student's mcnory. If a quantity, x, hes a vnrience, V, nnP thrt quanhtity is
rmultiplied by a facter, A, the varlience ¢f Ax is cqual tc¢ sz. Thig is a
- special case of a rore general rroperty ealled prepagaticn of error, which is
net fully dimcussed at this tine. But the special case Jjust mentioned is so
immortant that it is desiradle to cell attention tc it. In case the student
falle to sco why this property is true, he will find it helpful tc consiler what
hoytens to the standard error and its squarc when the unit of measurcnent is
chaneed. When o measurement is expressed in linear feet, for exanple, its
standard crrcr will also be exiressed in those units. When the rensurenent is
converted into inches, the ieasurcnent itself snd its standard error will btoth
bhe nultiplied by 12. The variance, or the square of the standerd errcr, will
then be multinlicd hy 122 or 144. ‘In this illustration, A is oquol to 12 and

APV thus beccree 144V, This illustraticn should be sufficient te satisfy the
student that when a mersurencnt is nultiplicd by o ccnstent foactor the variance
of the original messurenent -nust be multiplied by the SQuare of that factor to
chtnain tho veriance of the rcduct.

This groperty of vnrinnces is used td cerive the formula for the variance
.of the mcan of n messurements. When one hns & sample c¢f n neasurements fron
the same pepuleticn, the variances of the individusl nemsurenents nre cqual.
snd may bte represénted by V. By equation (26), the veorinnce of the sun of the
.n measurerents is

Vs = nV e e e == (27)

The nesan of the n nmieasurenents is chtsined by dividine their sum by n, which is
equivalent to nultislyins the sum by 1/n. The varience of the result will bhe
(1/0)? times thc varience cf the sum, as shcwn in equations (28) snd (29).

Vs (1/m)° Ve e (28)

(l/n) nwW=Vmn ------- (29)

Equatiun (29) shows the veriance cf the nesn ns previously ziven in equation
(21). This result is the c¢ne that fcllows from the theory of sompling for
infinite ncrulations. The cerres:.onding formula for sem:les drewn frenm a
finite ~cnulation cen Ve obterined Sy nrkins use of the ad’itive rroperty of
varisnces.

V-
X

When o srn~le of n measurcments is drswn from a finite 1ciulstion of N
nessurenents, the varisrnce of a sinzle neasurcrnient, =8 estimated by equation
(20), is actually a firurc thot refers tc a hy-cthetical infinite population,
of which the gziven finite populsticn ¢f ¥ mensurements is itself a samnle.
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This is o theoretical ccncept that requires the exercise of the reader's npowers
of inagination. When the sample ¢f n neasurenents is regarded as a sample fronm
that hypothetical infinite pouulation, the variance of the mean is V/n, as
incicated by ogquations (21) ané (29). Whern the finite pojpulation of ¥ ncasure-
nents 1s also regarded as a sample from tho seme hypothetical infinite popula-
ticn, the meen of all N meansurenents has e varisnce equal to V/N, The variance
of the nmean of the n measurenents, considered ps a sermle from the infinite
populaticn, thus ccnsiste of twc perts. The first caomponent consists of the
variation of tho means of sem>les of n, emeh drewn fycm the N ziven reasure-
ments. The second crmponent consists of the wrriation of the meecns for sanles
of N, drewn from the hypothetical infinite populetion. The first ccmponent is
the "ne to which nttention must be directed heceuse it represents the varistion
of the ncsns for semles of n measurements, ¢rch drawn only from the eiven sct
of N measurenents. It is obtained by subtractins thc quantity, V/N, from the
totel varintion, V/n, and one thus obtalns, 4 .

V== V/n - V/¥ = V(l/n - 1/N) = v(la?_ﬂ_ = %(N = =) - - - - - (30}

This is the rosult souzht, s indiceted previcusly by equation (22). . .

Those relations ere important in themselves, but the concepts upon which
they are based are still more so. Before continuing his studies in the theory
of sampling, the reader should carefully review the discussion on the varia-
2ility of indivicdual measurements and averapes. He should become thoroushly
fanlliar with the veriance notation and the general properties of variances.
Unless this basic material 1s completely understcod, ho will find himself in
difficulties later. He should be especially careful to observe the distinction
between the ;opulaticn and a sam-le from that populsticn and to recognize the
difference in point of view when samles are drawn from finitc populstions as
centrasted with infinite populations. It is more imjortant to understand the
relationshiye than to memorize the fornulas. '

Exercise 12.-The estimated variance of the medn of 10 neasurenents, drawn fron
e finite populotion of 50 ncnsurements, is 18. Commute the osti-
natel veriance of an individual neasurcnent.

Exerclse 13.-The annusl egg producticn of ench of 100 hens, chosen at random
fron a flock of 600, was reccorded, The voriance ¢f egz production
for individual tirds was com:iuted and found to equal 900. '
(a) To comute the variance of the rnean, shculd cne use equation
(21) or (22), or could oné use either? (b) If equation (22)
were used, how would the interpretation of the rcsult differ from
that which would be deri¥ed by s.lyinz equation (21)7

Exercice 14.-The averese of a set of 10 messurenents has a varisnce of 24. The
averase of n set of 20 mecasurcments has a variance of 12. (a) Are
the vorirnces of the individual mensurcnents equal in both samles

or arc they differcent? (b) Comnute the variance of the sum of the
two neens. (¢) Crmpute the varinnce of the sun of all 30 measure-

noents. (d) The unweightcd mean of two averages is conputed by
addine the twe given averezes and Adividing the result by 2. Com-
oute the variance of this unweizhted avernze. (e) Compute the
varlance of the averrse cf 11 30 memsurencnts, pocled ané treated
as one semnle.

-



b

P

oy
L}

Pooled Variance and the Significancé of the
Difference Between Two Averages

By this time, the student should be sufficiently well acqueinted with the
concept of variance to permit some additional applications of the theory to
specific problems in sempling. The probtlem of testing the significence of the
difference between two averages ariges frequently in practical work. The
formulas for computing the variances of differences moke these tests possible.

Such tests are a special casc of the more general problems involved in
testing & pull hy-othesis. In testing the difference between two reans, the
null hyvothesis is nothing more than an assumption that the two means are merely
two different estimates of the same quantity and that the otserved difference
hetween them is only a chance flucturtion caused by vagaries of random sampling.
The null hypothesls may thus be characterized as the hypothesis that there is
no difference between the true values of the two means in the population, or
populations, from which the twec samples were drawn. The difference between the
two observed sample means is then compared with the standard error of that
difference to determine whether the rull hypothesis should be asccepted or
rejected. The hypothesis will be accepted if the comparison shows that the
observed difference is likely to arise by chance snd rejected if the difference
{s so large that 1t would be unlikely to arise by chance in-situations where
the null hynothesis was true.

The test of significance thus supplice information of o rather negative
type. A practical man, unfamiliar with statietics, mey think it absurd to
test the hypothesis that no difference exists when he may have good reason to
suspect in advance thet there actually 1s a difference. To the statistician,
it represents a mathematical test that is useful because it answers a specific
question even though it has some shortcomings. It tells whether an observed
difference is large encugh so that it would be unreasonable to conclude that
no actual difference exists in the populations sampled.

So far as mathematical details are concerned, the application of the test
depends upon a knowledge of the freguency distribution of the ratio of the
difference of the two means to the estimated standard error of that difference,
under the hypothesis that the two samples are drawn from populations having the
same means. This problem, surprisingly enough, presents more complications
than one might expect. The frequency distribution of the ratio of the differ-
ence between two means to the etandard error of that difference is known for
the case where the two samples are assumed to be drawn from the game Normal
population or what amounts to the same thing, from identical Normal populations.

" This kind of test is cbviously somewhat specialized because it involves
something more than merely testing the difference tetween two means. It is the
test most frequently used in practice, however, and will be discussed in detail
at the present time. Before proceeding with the subject, it is necessary that
the reader develop » broader point of view with respect to the concept of
- variance than has yet been presented.

Suppose one has obtained a sample of ny measurements and another sample

of n, measurements. Let Elvrepresent the mean computed from the first sample
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end let X, represent the mean computed from the second sample. One could esti-

2
mate the varience of a single messurement from each semple by applying equation
(20) to the messurerents in esch sample. These two estimates, which mey be Vl

and Vz. will usually not be exactly equal even if the two samples were taken

from the same population. They will be two independent estimates of the same
quantity, however, provided that the samples were drawn from the same populations
or identical populations. Since V; and V5 are merely two different estimates

of the variance of a single measurament, one based on n, - 1l degrees of freedon

and the other on né

estimate, V, of this quantity by taking rn eversge of V, end V. This average

- 1 degrees of freedom, it is possible to obtain a single

will be a better estimate than either Vl or 72 token separstely and will, in

addition, enable the statistician to avoid the confusion of working with two

separate estimates. Since Vl and Vz are in this case based on different nums

hers of degrees of frecdom, the avernge ¥ must ba a welghted sverage of Vl and Vé

The weights tc be used are the respective numbers of degrees of freedom from.
which Vl and Vz were computed. One thus obtains,

(nl - l)V + (nz - l)V2
Ve e " - = - - - (33)
nl + na - 2 ' 3
The estimate, V 18 often called the puoled veriance for the two. srmples
because the computations indicated by equation (31) are equivalent to obtaining _
the sum of the squares of the devimticns nf the individual messurements fronm
the sample mean separately for each sample, adding the results, and dividing
the sum by tho combined or pooled degrees of freedom for the two samples. The
student may find it casier to think of V as an aversge, however. 1If ny and n,
heppen to be oquel, equation (31) reduces to
.. Vl’+ Vz

Ve S e e - (32)

The reader should verify this as an exercise.

Since V represents the variance of = single measﬁremeﬁt, the variances
6f the means, X, end X,, are V/n1 and V/nz. respectively. One mey then com-

pute the difference, d, between the two mesns, X, snéd X,, together with the

1 2’
varisnce and standard error of that difference.

T=% -F  ---------- (33)
=yl +1

Vy = v(nl + “z) ---------- (34)

o = VF§E .......... (35)

The ratio, E/sa, is distriduted according to the t distributicn discussed pre-

viously and thus the necessary probability tables for the test of significence
are avallable. The number of cdegrees of freedom to be used in rcading the ¢
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table is equal to ny + nz‘ - 2. This is the number of degrees of freedom used in

estimating V. The formula for computing t may be written in any of the follow-
ing equivalent forms,

t = /a0 - e e e e e e e = - - (36)
/sa
X3~ X
b8 ——e——e 4= - e - - - (37)
1 1
VARTRE™
s .z
17 %
t B em—smsste—— em e e = e e e e (38)

X x n.n
t - l - 2 / 1+2 ________ (39)
- 8 V/nl np

The resder will find it sn instructive exercise to cerive equations (37), (38),
and (39) from equaticn (36)., A little elgebra is 2ll that is required.

These formulas are based on the theory of sampling frcm infinite popula-
tions. The neccssary modifications to be mede for samples drawn from finite
populations ere not at all complicated. For finite populations one obteins,
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- = F— ") e D e - - (41)
N ‘N n
1l - -
V_(I =7V . ; 5 I (42)
Nym 2"z

and, as before,
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The utility of the t distributicn as a test of significonce h-s been
questioned by scnme statisticiens because it dGces not specifically test the sig-
nificence of the difference between tws means., A mcoment's reflcction will show
thet there is some Justification for such en argument. The cstimate of the
standerd error of the difference between the tws means 1s subject to sampling
errors. The vrlue of t is affected by these errors as well as by the difference
between the twoc mesns. An unusually lorge value of t could thus arise, not cnly
when the diffcrence between the two means is unusunlly large, but alsu when the
estimate of the standard error of thet difference is unususlly low. Further-
more, o fairly smoll value of t would not necesserily menn thet the difference
between the twe reans is small. The estimate of the standard error might be
¢onsiderebly tco large. A significantly large value of t thus cannoct be
ascribed entirely to o large difference between the means nor con a snall value
of t ve used as an indication of a small difference between those means. But
the test is a fairly sound indication as to whether the two srmples are drawn
from the same population or from identical populations, and the reader should
focus his attention on this aspect of the problem.

Attempts hove been made to derive similsr teets for problems in which the
varisnce of an individual mensurement is nct the seme in the two populations.
The results to date have not been very satisfactory. If the varisnce cof an
individurl measurement in the first pcpulation were Vy and the verience of an

individual mensurement in the seccné population were V,, the vnriance of the

2'
difference tetween the two means would be ZE + zg. The stenderd errcr of the
| S

difference would be the square root of .this quantity. The ratis of the differ-
ence Yetween the twc means tc¢ the above-menticned estimetc of tiic standard
arror of that difference dces not fcllow nry simple law of distribution. The
best that can be done 1n such czses is t¢ work with semrles sufficiently large
so that Vl and V2 can be regarded as ressonadbly accuratc estimates of

012 and 023. Tre rrtio of the difference to its standsrd error mey then be

assuned tc fcllow the Normal frequency distribution and the significance of
the differcrce betwean the twe mesns can be tested by uslng tables hased on
the Ncranl Curve. At nressnt, there seems to be no way of adepting the exact
t test to problems of this kind except in a few specisl cases which are not of
much interest to the nractical statisticlan.

Angzlysis of Variance

The t test provides » method ¢f testing the significence of the difference
Yetween two means, dbut it cennot he used to test the significance of the dif-
ferences smong three or more. Four this purpose o nmore genersl test is requicc”.
The gencral e>luticon of this problem resolves itself into what is kncwn as
Analysis of Veriance. Tor the snecial crse involving a2 compoarison of only twe
meons, the methcd ¢f enelysls of variance ylelds results identicel with those
given by the t test. It is becoming common practice to use the more general
test in all such protlems g0 that the some method is used threouchout, regard-
loss of thke number of mesns that =ore to be compared.
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The general nrincivle underlying arnslysis of variance is fairly simple.
The variability of the individusl messurements in two or more samples is used
to predict the variance of the means of those samples. The actusl variance of
those means is then computed by meking use of equetion (20), cr a modification
of it if the samples are not of the same size. The irdividual semple means
are used as the values of x in this equation ~nd the general mean for all
samples is used as the value of X. Tho number of semples, or the number cf
individual sample means to be compared, is used as the veslue of n in the
formula. This procedure yields two estimates of the variance of the sample
means, one predicted from the veriance of the individual measurements and the
other obtained by actually messuring the variability of those means. If there
is no significant difference between thoc means, thet 1s, if the differences
hetween the means can be explained by fluctunticns of random sampling slone,
the two estimates will be spproximately equal. On the other hand, when the
means are significantly different, the otserved variance of those means will
he greater than the variance that is predicted from the varisnce of the indi-
vidual measurements., This concept should be clear to the student before he
attempts to use analysis of variance in practical work. It is comparatively
simple, but it is so fundamental to work in this field that its importance
can hardly be overestinated.

So far as the details of the test are concerned, the mechanics of compu-~
tation differ slightly from the procedure indicated above. Instead of
actually computing the predicted e2nd observed warisnces of the means, it is
more convenient to express these variances in terms of the variances of indi-
vidual measurements. The observed variance of the individual measurements
in the samples and the observed variance of the means of those samples is com-
puted. From the observed variances of the means, onc works back to compute the
veriance of individual meesurements that would be required to account for the
observed variance:of the means. This second estimate of the varience of
individual meesurements is compared with the observed variance of the indivi-
dual messurements, computed directly from the individual measurements in the
samples. It is immaterial, from the stondpoint of mnthemstical theory, whether
this kind of comparison is mede or whether predicted and observed estimates of
the variance of the means are compared. The results will be identical. But
there are certain advantages in making the comparison on the basis of indivi-
dual measurenents as just described, end it is customary to spply the test in
that fashion. The verious computeations that must be mede are fairly simple.

First, the variance of the individual measurements must be estimated by
computing a pooled voriance of individual messurements from all samples whose
means are to be compared., Let this estimnte be denocted by Vz. If there are

n samples and the numbers of measurements in the varlous samples are kl' k2’

-—-, k V2 is given by the eguertion,

N (CE 0L (45)
S(ki) - n

In this equation the double summatlon sign is used to indicate the pooled sum

of squares of the deviations of the measurements from the sample means. In

other words, the sum of the squares of the deviations of individual measure-

ments from the sample mean is computed separately for each sample and the

results are added. The quentity, S(k;) - n, represents the pooled degrees of

n’
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freedom. The first semple contributes kl - 1 degrees of freedom, the second
contribvutes k2 - 1, #nd so on. Since there are n samples, the sum of all these
degrees of freedom is S(ki) ~ n. This is the total number of measurements in
all samples minus the number of ssemples, The estimate V, may be regarded as
the average variance ¢f the individual measurements within the samples and in

volves nothing more then a simple extension of a principle already discussed in
connection with equation (31) in the preceding section.

After obtaining Vz. which is the estimnte of the varisnce of the individual

mecsurenonts obtained from those measurements themselves, the other estimate
must be ccmputed from the observed sample means. This estimate is denoted by
¥V, and moy be computed from the equation,

- 2
v1=S[k'i(Xi"—x-)] -_____'_‘ (46)
n-1

In this equation the ;1 represent the n sample means and X represents the mean

of all measurements in the n samples. Vl is the velue that the variance’of‘the

individual mensurements would have to assume in order to account exactly for the
observed variance of the n ssmple means. If there were no significent difference
between the means, Vl would not differ significantly from Vz. But if the means

were significantly different, Vl would be significantly greater than Vs.

To decide whether Vl is significantly greater than Vz. it is more convenient
to work with the ratio, Vl/Vé. then with the difference, V; - V5. This ratio

is deroted by F. Its frequency distribution has been worked out, so all the
necessary mechinery for applying the test of significance is available. When

Vl and Vz are approxinstely equal, F will be approximately equal to unity. If

the sample means are significantly different, ¥ will.be’ larger'than unity. The
frequency distribution of F depends upon the number of degrees of freedom used

in estimating Vl snd V2. Comprehensive tables of the distribution have nower

been published, but the values of F which must be equaled or exceeded for signi-
ficance have been tsobulated for a large number of degrees of freedom. Tables

of these critical vslues now are given in most textbcoks. In practical problems
one is thus able to determine whether an observed value of F 1is sufficiently
large to indicate = significant difference between the sample means.

When only two mesns sre compared, there is 1 degree of freedom for esti-
nating Vl‘ In this case the F test will yield exactly the ssme results as the

t test end many stotisticians prefer tc use it ir such cases. If a number of
teste of significence must be made, it is usually more ccnvenient to use the

F test throughout than to use the t test for comparisons involving two means

and epplying the F test to the others. As the reader geins some facillity in

the application of these tests, he will be likely to feel nmore and more in-
clihed to use the F test in preference to the t test in problems where he has a
choice. The computations are really easier to perform and their general nature
is such that they appear as natural steps to more extcnsive annlysis of the data.
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This will be mcre apparent after the reader becomes more familiar with modern
statiastical techniques. TFor the present, the reader should be content to
understend the meaning of the F test. As applied ir practice, it invclves

only a oomparison of the veriance of the individuzl measurements in the samples,
28 computed directly from those measurements, with a hypothetical value which
thet variance would have to assume in order to account for the observed dif-
ferences between the sample means.

It mey be difficult for the student to understand why the estimate Vl,

comnuted frem equation (46), represents an estimate of the veriance of indi-
vidual measurements. The relationship is easier to visualize for the special
case in whkich ezch of the samples contains the same number of measurements.
In that case equaticn (46) reduces to

v, = kS f(xi - %° l ________ -
n-1
where k represcnts the number of measurements in each sample. The quantity
s [z, - ©?
__n 3 =~ represents the variance of the means ofthe n samples, or what

amounts to the same thing, the variance of means for-wemples cf k measurements
each, The fundsmental relation between the verinrnce of means and ‘the variance
of individual messurements is indicated by equation (21). It shows that the
vorisnce of means for samples of k measurements is cbtained dy dividing the
variance of the individual measurcments by k. Conversely, given the variance
of the means, the variance of the individual measurements may be computed by
multiplying the varlance of the means by k. Eguation (47) thus involves -
nothing more than computing the variance of the means and multiplying that
variance by the number of measursements in each sample to derive an estimate of
the varisnce ¢f the individuel measurements.

Equation (46) could te derived on the same basis except that the problem
would appear more complicated becsuse the numbers of measurements in the
various samples are unequal. It would be necessary to introduce the concept
of welghting into the discussion and, for the present, 1t is better to hold
that subject in abeyance., All that 1s required at thie stage is a good under-
stonding of the principles underlying equation (47) and a realization that
equation (46) should be given a similar interpretation.

Vl is often called the varisnce betwecen means or variance between samples,

but most statisticians like to refer to this quantity as the mean square
between samples. There hes freguently been a tendency for inexperienced
workers to confuse Vl with the varisnce of the means. The use of the term

mean square helps to emphasize that Vl is a2 quantity computed from the

variance of the means but does not represent the variance cf the meens. It
should not te forgotten that Vl is actuslly an estimate of the variance of

individual measurements that is computed from the observed variance of the
means.

The estimate Vz which represents the varisnce of the individual measure-

ments computed directly from those measurements, is generally called the
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mean sguare within samples to keep the terminology consistent. If the mean
square between samples is significantly greater than the mean square within
gsamples, it may be concluded thst the mans of the samples are significantly

different.

This discussion closes with a short reference to an interesting property
that is characteristic of analysis of variance,,namely, the additive property
of sums of squares. The quantity S[ki(%y - °] 1n equation (46) is called
the sum of squares between samples. Similaerly, the quantity SS !?X - Ei) in
equation (45) 1is called the sum of gquares within samples. The sum of these two sums
of squares is equal to the sum of the squares of the deviatlions of the measure-
ments for all n semples from the mean of all those measurements. This sum 1is
called the total sum of squsrcg. The relationship may be expressed algebral-
cally by the equation,

5 fki(ii - 2)2-] + S8 [(x - Ei)BJ =S [(x - %)% - - (48)
. ) i
The corresponding d;grees of freedom have a similar property. The degrees
of freedom between samples is n - 1. The degrees of freedom within samples is
S(ki) - n. The sum of these is equal to S(ki) - 1, which is the total number

of degrees of freedom or one less than the total number of messurements., These
relationships are summarized in table 4 in much the same vway. that the results
of an analysis of variance on actual data are presented.

Table 4. - Structure of sn analysis of variance toble.

Source of Degrees of Sum of Squares Mean square
variabllity freedon .
Between samples n-1 s [ki(Ii - 3:')2] "5 [ki(;i - ;)2}
A n -1
2 2]
Within samples $(ky) - n | 58] (X - x,) S8 [(X - x;)
S(ki) -n
i 2
Total S(ky) -1 S [(x - -i)ZJ s [(x - X) }

So far as the degrees of freedom are concerned, it is easy to see why the
additive property holds true. It is more difficult to verify the corresponding
relationship for the sums of gquares, dbut this can be done by algebraic manipu-
lation without much effort. If the reader is interestéd in mathematics, the
verification of equation (48) will provide him with an instructive exercise.

The total mean square shown in table 4 is not required for testing the
significance of the differonce between the sample means. It has been inserted
in the table at thies time merely to complete the picture. But if will be re-
quired in some applications of mnalysis of variance that will be discussed
later.
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Exercise 15.~From a sample of 15 measurements, thec variancc of a single
measurement was estimated to be 8.26. A sinilar estimate from
a second sample of 10 measurements was 9.04. Under the assump-
tion thet the two samples wore drawn from identical populations,
compute (a) the pooled or average variance for the two samples;
(b) the varience of the mean for each sample; (c) the variance
of the difference of the means for the two samples.

Exercise 16.-°Uppcse that the arithmetic mesn for the first sample in Exer-
cise 15 is 12.45 while that for the second sample is 7.18.
Compute the value of t by equeticn (39) or its equivelent.

Exercise 17,-From the deta given in Exercise 15 and 16 construct an analysis
of variance table, as indicated dy table 4, by computing the
verious degrees of freedom, sums of squares, and mean squares.

Exercisc 18.~Compute the value of F for the analysis of varisnce prepared in

Exercise 17. Corpute v/F and compare the result with the value
of ¢t obteined in Bxercise 16. How do they compare? This rela~
ticnship is always true when there is only 1 degree of freedom
between samples snd shows why either the F test or the t test
can be used in problems of this kind.

Short Cuts in Computation

The arithmetical work required in most statistical investigmations is one
of the necessary evils with which the statisticlian must contend. Any device
that cen be invented to reduce this overhesd should be put to use immediately.
Ingenious computers soon lcearn to eliminate unnecessary steps in an anslysis
wherever possible and this kind of activity should be encoursged. Many such
devices have been discovered and are in general use at the present time. One
of these, which reclates to the computation of standard errors and the various
sums c¢f squsares involved in an snalysis of varisnce, may be discussed to good
advantage at this point.

As a stop in the computation of the veriance of individual measurenents,
1t is necessary to compute the sum cf squares, defined by S i (X - E)z] , which

represents the sum of the squares of the deviations of the 1ndiv1dual measure~
ments from thelr arithmetic mean. The numerical value of this expression
could be computed by subtracting the mean from each individual measurement,
squaring each of these deviations, and adding the results. But the same result
could be achieved more eesily by making use of the rclationship,

[(x -3 ]— s(x3) - fs(x)lz/k SRR (49)

In this equaticn, S(X ) represents the sum of the squares of the individual
measurements, S(X) represents the sum of those messurements, and k represents
the number of measurements. The mathemetically minded student should derive
this equation as an exercise. The derivaticn is fairly simple and anyone
faniliar with ordinary slgebra should heve ho difficulty in verifying the
relationship.
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Equation (49) shows that the suvm of the squares of tke deviations of the
individual measuremcnts from their saritinetic mean can be computed without
actually obtairing the deviaticns of the individusl measurements frem the mean,
All that is necesssary 1s tc square the measurements themselves and to subtract
from the sum of the memsurements the ccrrection term obtained by squaring the
stn of the measurements and lividing by the number of measurements. In additior
L2 ¢liminnting the need for cocmputing the individuel deviations, this prccedure
is sctually more accurste becmuse errors involved in rounding the mean to a
ziven nunber of decinal plnces are avolilded

Wher the individuanl mecasurements are expressed in terms of large numbers,
the squeres of the messurements may be awkwar@ly large. In such cases, it is
often desirable to cole the data by subtracting a constent from each measure-
ment before applying equation (49)., Such an adjustment has no effect whatever
on the numericel value of S (X - %) because the value of X changes with the
~rdjustment in the ssme menn~r ps the velues of X chenge. Thus a new set cf
date is wrovideé whick can be manipulasted more easily withcut eny loss of pre-
cision. :

Equertion (49) can Yo ndapted to the computation of the various sums cf
squares in an enalysis of varlance without much difficulty. If there are n
samples end the numbers of measurements in those samples are kl' kz, - kn,
the total sum of squares 1: given by the equatlon,

l(x - %) ] s(x) -[s(X)} [s(ky) - - - (50)

In this equation, S(X ) renresents the sum of the squares of ths measurements
in all semples combined, S(X) represents the sum of those measurements, and
S(ki) represents the total number of messurements.

The sun of squeres within samples is obttained by applying equation (49) to
each ssample separately snd adding the results. The final result can de
expressed by the cquetion,

[ -t /;- A
ss ’(x - ii)zl = 5(x°) - s‘ 5(x )lzlk{} ~ - - (51)

Equation (51) iooks scmewhat ccmw11coteé but the reader should not let the
algebraic notation frighten him unduly. As stated previcusly, equetion (51)
represents the final result of aprlying equetion (49) separately to each sample
a2né then combinine the n sums of sguares into » total. This total can be
expressed as the ¢ifference between the sum of the squares of the individual
measurements in all semples 2nd the sum of the n separate correction terms of

vhe form, s(x,) 2/ki' as shown in equetion (51).

The sum of squarcs between samples is given by the equation,

Sj[ki(i'i -0?-s Z";s(xi)}z/ki; ; [s(xﬂz/s(ki) c e (52)

It should be observed that the first quantity in the right-hand member of this
equation is identical with the quantity used as the correction term in equation
(51). The correction term in eguation (52) is icdentical with the correction
term used in equation (50).
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It is evident that much time can by saved by this scheme of computation
becsuse computaticns performed for ore step in the analysis can also Ve used
in succeeding operations, Furthermore, this method of computing can be
orgenized on a systematic bYasls that makes the various ocjerations easy to
rementer. The preferences of computers vary with respect to the order in
which the various ‘oderations sre perfermed, but the student should learn to
follow o~ definite routine of some kind in performing these computations. One
srtisfactory scheme is to computc the totel sum of squares first of all. This

involves computing S(Xz) and [S(X ]B/S(ki). The sum of squares between
samples is computed rext. This involves the computation of S{[%(Xi)]zlki} and
the use of the correction term used in the preceding step. The sum of squares
within semples can then te obtained merely by substracting the quantity,

2
s_{l?(xi)} /k%} y computed in the preceding operatior, from S(Xz) which has

elso been computed previously. As a check, the sum of squares between samples
and the sum of squares within samples should be added to make sure that the
sum agrees with the total sum of squares thnt was computed previously as the
first step in the analysis. This check ghould always be performed, but it
should be noted that 1t dces nct provide a complete check on the accuracy of

th k, An ror in the antity, 2
& wor T GTTOT in Bhe ausmbit¥. s ([S(Xi)] /kj, will introduce compensat-

ing errors into the sum cf sguares between semples and the sum of squares
within samples so that the sum of the two will ngree with the total sum of
squares computed previously. The check will verify that the scheme of
analysis was proverly followed.

The allocation of the verious Cegrees of freedom should alsc be performed
systematically. The total number of ‘eurecs of freedom 1is one less than the
total number of measurements in all samples. The legrees of freedom between
samples is one less then the number of semples. To compute the number of
degrees of frécdom within samples it is necessary to remember that the degrees
of freedom are computed separately for each sample nand that these separnte
numbers are ther combined into a pooled value. The number cf degrees of free-
dom contributed by each semple is onc less than the number of measurements in
that semple. These degrees of freedom are mercly adéded to arrive at the
degrees of freedom within samples. When the various degrecs of freedom have
been computed, a useful check is nrovided by adding the degrees of freedon
contrituted by all sources and comparingz the result with the total which was
computed first. This kird of check enables the statistician to verify that he
has kept his thinking straight.

Most experienced workers prefer to compute the degrees of freedom for an
anplysis of variance before computing the sums of squares. The process of
assigning these degrees of freedom provides a ccnvenient method of thinking
the nroblem through before the neavy werk is hegun. The steps involved in the
process form an outline for the succeeding ccmputations that the statisticien
will 'finld extremely helpful. This fact mey not bte so spparent for the simple
enrlysis of varisnce described in the preceding section, dbut when the reader
begins to work with more complicated problems it will be evident without
further argunent.
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Exercisc 19.-The following data are cotton yields (pounds per acre) reported
oy ‘30 farmers in three Arkansas counties on December 1, 1939,

Clevurne Falton « Izard
200 ' 125 210
208 . 300 190
160 250 235
214 133 225
228 225 175
240 225 240
100 160 200
135 250 250
255 150
175 210
195 166

Compute the analysis of variance outlined in table 4, using the
short-cut methods descrited in this section. The data for each
county cen be regerded as a sample of measurements but it is more
appropriate to speak of veristion between counties and within
countigs rether thon of variation between samples ond within _
somnles. Such terminology is rore descriptive of the problem at
hand. Are the mean vizlds for the 3 counties significantly
different?

Application of Analysis of Variance tc Sempling Problems

Analysis of Variance was originally dcveloned for testing the significance

of differcnces in experimental data, particularly in agrcromy work. This
method of analysis proved so useful in that field that it was applied to data
in cther fields at an enrly date. But its spplicetion to a comparison of the
relative efficiencies of different sammling schemes is fairly recent. The
current interest of statisticiens in semple census methods has stimulated such
applicetions considerably, and their value is now fully sppreciated. In such
applicetions, one is primarily interested in segregoting oand measuring the com-
ponent parts of the total veriability in data obtained with a particular sampl-
ing scheme. The anelysis furnishes information that shows whether a better
sampling scheme can be devised, and if so, what form it should take. There is
more emphasis on measuring the nagnitude of the varistion than on testing the
significence of differences in the data. Applicrtions of analysis of varlesnce
in this field are thus conducted from # slightly different rnoint of view than
those ordinarily encountered in other types of research work.

To 1llustrate the utility of onalysis of variance in sampling work, the
following prectical prohlem may be considered. A county in North Carolina
contains 2,238 farms distributec over nine townships. Anr estimate of the acres
of cropland per farm is recuired for the county, and this estimate is to be
derived from en enumeration of a sample of farms from the county. The question
to be answered is this: Should the samplec be » rondom sample of farms from the
county, or should the sempling be controlled so that some Tarms will be taken
from every township? The snswer to this question depenés upon the way in which
the cropland for incdividual farms veries from one townshin to snother and from
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farm to farm within each township. If the acreage of cropland per farm varies
considerably from township to township, but is fairly constant from farm to
farm within any one township, the controlled sample would yield better results
than s random sample of the same size. On the other hand, if there is no
greater difference betwecen farms in different townships than between farms in
the same township, no precision could be gained by using a controlled sample.

A preliminary sample can be taken as a means of obtaining sufficient
information about the population to serve as a guide in planning the main
survey. Supuose five of the nire townships are chosen ot random and 20 farms,
selectsd at random in each of these townships, arc enumcrated with the results
shown in table 5.

Table 5. - Acres of cropland on 100 farms from five townships in a North
Carolina county containing 2,238 farms distributed over nine
townships, as indicated by 1939 State Farm Census.

Farm Croplend
Number Township | Township | Township |Township | Township
1 2 3 4 5

ACTYAS acres acres acres acres

1 18 24 10 17 12

2 2 21 110 169 92

3 33 24 16 30 18

4 37 26 16 25 74

5 25 13 24 23 7

6 66 30 8 52 17

7 17 21 38 13 3

8 11 36 32 41 19

9 100 20 68 45 6
10 14 26 70 63 17
11 28 21 32 24 42
12 19 39 19 54 12
13 44 40 4 35 11
14 20 55 26 73 37
15 29 35 35 36 73
16 24 6 14 22 10
17 1 42 9 19 24
18 12 5 21 38 4
19. 24 13 24 23 6.
20 3 g4 I 27 30 22
Total 527 501 | 603 832 556

These data yield the enalysis of vrrisnce shown in table 6. The reader

should verify the computstions as »n exercise.

Table 6. - Analysis of variance of croplend on 100 individual farms equnlly
apportioned among five townchips in »~ North Crrolina County.

Source of varintion | Degrees of Freedom | Sum of Squares| Mean Square
Between townships 4 2,938 735
Withir townships 95 62,377 657
Total 99 , 65,31€ 660 ‘J
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If the differences between farms in different townships were no greater
than those between farms in any one township, the mean square between town-
ships would be equal to the mean square within townships except for ordinary
sampling fluctuations. Table 6 shows that the mean square between townships
is slightly larger tharn the mean square within townships. This indicates that
there are some consistent differences from township to township with respect
to acreage of cropland on individual farms. The choice between controlled
sampling and random sampling as a method of conducting a more extensive survey
deperds upon the relationship between the "within township" mean square and the
"total" mean square. If the sampling were controlled so that observations
would be tsken at random only within townships, the sampling error of the final
result would depend upon the mean square within the townships. If a random
sample were taken from the county as a whole without regard to the particular
townships in which farms were selected, the sampling error of the final result
would depend upon the total mean square in the population.

The mean square within townships shown in table 6 was estimated from only
five of the nine townships in the county, but it seems reasonable to suppose
that this is a falr estimate of the aversge variability within all nine town-
ships. The total mean square shown in table 6 does not represent an exact
estimate of the total mean square for the entire population, dbut it serves as
a good approximation in this case and in similar problems. Using 657 as an
estimate of the mean square within townghips and 660 as an estimate of the
total mean square, the relatlve efficiency of a controlled sample, as compared
with a random sample from the county as a whole, is 660/657 or 100.5 percent.
In other words, a random sample would be 0.5 percent less efficient than a
controlled sample of the same size. This difference is hardly large emough to
Justify the use of a controlled sample on statistical grounds. Unless there
are some administrative advantages to be gained by regionalizing the sampling
work, one might as well take a random sample of farms from the county as a
whole. '

The relative efficiency of a controlled samplec can be estimated more
accurately by actually estimating the total mean square for all farms in the
county. As stated previously, this estimate will not differ greatly from the
figure given in table 6, but it is of considerable theoretical interest. To
derive such an estimate, 2 table like table 6 must be constructed for the
county as a whole. The data in table 6 can be used to construct such a table,
but first it is necessary to understand exactly what the varlous means squares
in this tahle represent.

The mean square between townships, 735, was obtained by computing the
variance of the five township mesns and multiplying that variance by the number
of farms from each township, c¢r 20, In other words, the observed variance of
the township means is 735/20. This quentity mey be regarded as consisting of
two components. The first component, which may be designated by Vt, represents

the actual variance of the true township means. The second component repre-
sents the sampling error introduced by the fact that each observed township
mean is only an estimate of the true township mean derived from 20 of the
farms ir the township. The mesn squere within townships, which was estimated
as 657 ir table 6, represents the veriance for individual farms in the same
township and may be regarded as a measure of the sampling variance for an
individual farm. The sampling verisnce of a mean, computed from data for 20
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forms, is, therefore, 657/20. The value of V, can thus be estinated by sub-

trecting 657/20 from the variance of the chserved township means, 735/20. The
result is 78/20 or 3.9. These relations may be summarized by saying that the
mean square between townships 1s an estimate of the quantity, kVt + V, in wirich

k ie the number of farms from eack township, Vt the varlance of the true town-

ship means, and V the sampling variance of observed cropland for an individual
farm.

The receder may wonder how this procedure could have been applied if the
numbers of farms from the five townships had been unequal. In that case, the
numbers of farms from the five townships would be represented by kl' kz, kz.

k4, and k5. The mean square between tcwnships would then be an estimate of

kOVt + V, where the value_of kb would be given by the equation,

. 1
K =
- 0 n - l . .
in which n represente the number of townships in the semple. The value of ko
may be regarded as a sort of average cf ki’ but it will glways be somewhat

. , .
| sk, - s, )/S(ki)‘ ——— - - (53)

less than the arithmetic mean of the ki unless all of the k,1 ere equal. If all
the k, are equal, the value of ky given by equation (53) willreimply be equal
to the number of farms in a single township.

In constructing the analysis of variance for the entire population, it is
convenlent to set up the skeleton of a table like table 6 and to record all of
the data so far available. First 1t 1s necessary tc enter the various degrees
of freedom as shown in table 7.

Table 7. ~ Analyeis of varinnce of cropland for all farms in a North Cerolina
county predicted from analysis of a sample.

Source of variation | Degrees of Sum of
Frecedon Squares Mean Square
Between townships 8 12,848 1,606
Within townships 2,229 1,464,453 657
| Total 2,237 1,477,301 660

As there are nine townships in the county, the number of degrees of free-~
dom between townships is equal to eight. As there are 2,238 farms in the
county and a degree of fraedom is deducted for each of the.nire townships, the
number of degrees of freedom within townships is 2,229, The total number of
degrees of freedom is one less than the totel rumber of farms, or 2,237.

The mean square within townships shown in table 6 can be accepted as an
estimate of the average mean square within all nine townships in the county
and may be reccrded in the aporopriaste space in table 7. The mean square
between townships will differ from the value given in tadle 6. The mean
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square given in table 6 is an estimate of kVt + V in which k is equal to 20,

The mean square to be ontered in table 7 must be an estimate of KOV + V in

which Kb depends upon the number of farms actually present in the individual
townships. The number of farms in each townshipy indicated by the 1939 State

Farm Census, is shown in table 8,

Table 8. - Distribution of farms used in constructing table 7.

Township Number of farms
1 205
2 i'd
3 497
4 214
5 227
6 255
7 220
8 276
9 267

Total 2,238

As the numbers of farms in the nine townships are unequal, the value of
K, must be computed from the équation,

Ky = — - s(xy) - S, /5(8y) -~ - - - (54)

which is identical with equation (53) except that the various quantities enter-
ing into the equation are population, rather than sample, data. The numerical
value of K, for the data at hand is 1/8 (2238 - 653178/2238) or 243.27.

The values of V. and V were computed previously and found to be 3.9 and

657, respectively. The mean square between townships for the entire population,
- which is equal to Kth + 7V, can now be computed. Its numerical value is

(243.27)(3.9) + 657 or 1606.

The sum of sguares between towrships and within-townships is computed from
the mean squares and degrees of freedom by multiplication. Adding these two
sums of squares yields an estimate of 1,477,301 for the total sum of squares
for the entiro population.

The total mean square for the entire population is obtained by dividing
this last figure by the total degrecs of freedom, or 2,237. The result is 660
which agrees perfectly with the corresponding valuse in table 6 to three signi-
ficant figures.

This kind of result is frequently encountered in practice. The estimate
of the tctal mean squere for the entire population usually differs little from
the total mean square obtained in the analysis of variasncc of a sample. It is
generally advisable to compute the populetion value, however, because the bias
in the sample value is sometimes large cnough to justify the small amount of
additional work involved.
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The anslysis of variance shown in table 7 is the analysis that would be
expected if the individual farm data for the entire county were used in the
computations, In this cese the results were unusually good. An actual
analysis performed on the 2,238 individual farm records yielded the results
shown in table 9.

Table 9. - Analysis of variance of cropland for all farms in a North Carolina
‘county computed from data for all farms in the county.

Source of variation| Degrees of Sum of | Mean square
Freedom Squares

Between townships 8 12,341 1,543

Within townships 2,229 1,486,427 667

Total 2,237 1,498768 670

The analysis in teble 7 represents an inflation of the analysis of vari-
ance obteined for the ssmple and is consequently no more accurate than that
analysis. It should not be used to test the significance of differences, its
only purpose is to estimate the effects of the various sources of variability
in the population as a whole. These usually have different weights in the
population than in the sample. On the basis of the anelysis in table 9, the
relative efficiency of a controlled sample, as compared with a random semple of
the seme size, is 670/667 or 100.4 percent which sgrees closely with the
results obtained previously from the sample data. Ordinarily, one will find
that the relative efficiency of a controlled semple, obtained from e predicted
anslysis of variance for an entire population, will not differ much from the
value that would be obtained from an actual anelysis of the entire population.
Values like the estimated mesn squere between townships shown in table 7 are
subject to large standard errors because the degrees of freedom assdociated
with this mean square are usually small in relation to the total. The mean
square between townships shown in table 7 agrces more closely with the corres-
ponding true value in table 9 than would ordinarily be expected under condi-
tions of random sampling. This is not a serious matter in estimating the
relative efficlencies of different methods of sampling because the total mcan
square in tebles like table 7 is of more interest than the mean square between
townships. The mean square between tcwnships could fluctunte over a fairly
wide range without much.effect on the estimate of the total mean square.

The preceding discussion should give the reader an indication of the
value of analysis of verisnce in sampling work. An analysis of a small pre-
liminery sample supplies the necescary informetion for the designing of a
sampling scheme that is best adapted to a particular problem. Students are
often surprised to leern thet one kind of sample enables the prediction of the
behavior of n different kind of sample, but a8 indicated above, there is
nothing mysterious about the process. Possible sources of variability in the
prelininary date are identified and measured. Once this has been done, it is
fairly easy to compute the effects of these scurces of variability upon a
different kind of sample. It is important to remember that such results are
only estimates, hut they are exceedingly useful. Some ceutiorn must be exer-
clsed in epplying them, particularly when some of the sources of variability
do not appeer to be statisticnlly significant., Sometimes this means that such
sources of veriability should be ignored, but it might rlso mesn that they
should be measured more accurately.
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Exercise 20.%Convert table 5 into a table with unequnl numbers of observations
for the five townships by deleting thé last two observations for
tcwnship 1, the last observetion for township 3, the last 5 obser-
vations for township 4, andg the last 4 observeticns for township
5. Compute (a) the analysis of varisnce correspcnding to tzble 6,
(b) the values of k, and Yy, and (¢) the predicted analysis of

variance for the entire county corresponding to table 7.

Some General Principles of Sampling

Before proceeding with the mathematical analysis of semple data, it is
desirable to summarize the essential features of several sampling schemes that
have been used by statisticians. As stated previcusly, a sample is drawn from
s population end studied tc obtain .informetion about the population. The
sample is usuaslly of little interest in itself. Consequently, research workers
strive to draw the sample in such a way that its characteristics will resemble
the characteristics of the population as much as possible. Research workers
‘often refer tc a "random sample," a "representative sample," an "adequate
sample,” or a "fair sample," in an attempt to embody this fundsmental concept
into a single descriptive term, but at times there appears to be some lack of
understanding of the mathematical definitions that should be kept in nind.

Apparently, a gocd deal of misunderstanding is prevalent in regnrd to the
mathematicel definition of a randonm sarple. Some workers confuse the word
"randem" with "representative." A rendom sample is defined as a semple taken
in such a way that every individual in the populsntion has an equal chance of
being included. Nothing in this definition gives assurance that e particulsr
randoem sample will be representative; in fact, a random sample mny sometimes be
far from representative. The noteworthy feature of a random sample is that 1t
is likely to be representative, which is different from saying that it is
always representative. In teking a random sample of 100 farms from a county,
for example, it is possidle to get either the 100 largest or the 100 smallest
in any one sample; but some ¢f each con usually be expected.

When random sarmles are drawn repeatedly from the same population, the
sggregate of a large number of samples is more likely to be representative of
the populaticn than any one of the individual semples. Thus the statement
thet, in the long run, random samples will tend to be representative is justi-
fied. Confidence in the result of *he sempling would incresse as the size of
such sampnles, or the number of samples, increased.

It should be noted that, in random sampling, irdividuals are taken from a
populaticn without any attempt to force the sample to be representative. The
tendency of random samples to be representative is inherent in the method of
sanpling itself. )

The sampling errors caused by the failure of sonme individual random
semples to be representative become troudblesome when it is mecessary to draw
conclusions abcut a nopuletion from a single small sample or a few such samples.
Rescerch workers learned at an eerly date thet such sampling errors could be
reduced if samples were drawn in such a way as to enforce scme similarity
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between the characteristics of the ssmnle and the population. Such a proce-
dure presupposes some advance informcticr about the population so that the
worker has some knowledge in regard to what would constitute = representative
sample.

The general procedure in stratified sampling 18 t¢ divide the populafion
into subreglons or "strata' in such a way that the differences between indivi-
duals in the same stratum are as small as possible while the differencss
Detween the strata are as great as possible. The sampling can then be con-
trolled in such a way that a nredetermined number of individuals is teken at
rendom from every stratum. If the differences between individuals from dif-
ferent strata are greater than those between individuals from the same stratum,
such a sample can be made more representative of the population than a random
sample of the same size. The different types of individuals segregated by the
process of stratification can be included in the semple in their proper pro-
portions. >

In taking a sample of farms from a county, for example, the county may be
stratified by townships to good advantoge if the differences between farms in
different townships are greater thon the differcnces between farms in the same
townshin. This is often the case because differences in type of farming are
generally associated with differences in loccation. Such regionalization of
the sampling work often possesses administrative advantages in addition to the
gain in accurscy. From the standpoint of statistical precision, the sempling
errcrs of results derived from stratified samples are smaller than correspond-
ing sampling errors for rendom samples of the same size. Such errors depend
only on the variebility within strata which should be less than the varlability
for the populetion as a whoie because the sirata are chosen in such a way that
8. large porticn of the totsl variability has been removed from the estimate of
error.

The degree to which this kind of control can be exercised is limited only
by the extent of information about the population thnt is availlable before the
sample is drswn. If information regarding type of farm is availadle, for
example, all the frrms in a county could be grouped by type within every town-
ship and thus 2 double stratification of the population would be provided. The
wrocess could be continued slmost indefinitely.

This method of sempling can be sxtremely useful, but there is an element
of danger in vsing it becsuse the research worker may be migtaken in regard to
scme of his preliminary ideas about the populrtion. Such miscenceptions mey
lead to a biss in the final result which is constrnt and cannot be reduced by
increasing the size or numter of the somples as random sampling errors are
reduced. A bias would arise if each part of the population was not sempled in
its proper proporticn. In some tyres of work 1t seems preferable to risk the
occurrence of a pcssible bias when it appears that this bias will be smaller
than the sampling errer that could he coxpected if the sampling were random.
Such a point of view does not have much justification in experimental work
where the interest lies in testing the significance of the differences between
semples, but it is o logical position t¢ trke when the interest is in using a
srmple to cbtaln descriptive informrtion ohout o population that is of interest
in itself. ' :
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Subsampling may be descrived as a special case of stratified sampling.
The number of classes or strata to be sampled may be so large that available
facilities do not enable the taking of samples from all strata as in ordinary
stratified sampling. If it is found necessary to reduce the scope of the
sampling without sacrificing all of the benefits of stratified sampling, it is
often desirable to chocse some strata at random and to take random samples
from those strata only. This method of sampling may also be substituted for
random sampling for administrative reasons. The restriction of sampling to a
limited number of strata often produces economics such as a reduction in the
travel and supervision required for sgsembling the data.

The data reported in table 5 illustrate a problem in subsampling. The
nine townships in the county provided a geographic stratification. A sample of
farms from the five townships chosen at random could always be enumerated with
less effort than a stratified semple involving all nine townships. Random
samples of farms from the county as a whole could be expected to cover more
then five townships most of the time and would slso involve more work than the
subsampling scheme.

When the veriation between strata is large in relation to the variation
within strata, subsampling may not gilve as accurnte results as a complete
stratified sample or a» random sample. Subsempling is used in preference to
other methods of sampling mainly for administrative reasons. Thie kind of
sampling is recommended whenever the varistion of the individusls within the
lerger units sampled 1s not small in reletion to the differences between the
larger units. This should be borne in mind when a sempling scheme is to be
chosen. .

If it is deslired to attsch a standard error tc an estimate of a popula~
tion charascteristic computed from a ssmple, it is necessary to retain an
element of randomness in the sampling scheme. In other words, the sampling
should not be comnletely controlled. In stratified sampling this element of
randomness is achieved by taking individusl observetions at random within the
classifications esteblished by the stratificetion. This principle is violated
in sampling schemes that follow o systemertic design so that each observation
in the sample is selected according to some fixed rule.

Ar example of systematic sampling may be found in surveys of farms in
which every tenth farm along a road is enumerated. Such samples will usually
yield unbiased estimstes of srithmetic mesns, so long 2s the starting point is
chosen at random, but no accurate estimates of standrrd errors can be obtained
from individual samples taken in this way. Some recent research indicates
that strndard errors may be estimated from special kinds of systematic samples
drewn from some populations, but as a general rule, it is at present feasible
to estimate standard errors for systemgtic ssmples by empirical methods only.
If repeatcd systematic samples are drewn from the same population, the observed
variation in the arithmetic meen from sample to semple crn be used to estinate
the precision of such samples for the particular kiné of populastion sampled.
Such rn estimate obviously cennot be obtrnined from a single sample.

Systematic semvling hes a strong appeal for meny resenrch workers becnuse
this kind of srmple insures a good spacing between the individurl ssmpling
units. The possibility of many individusl sempling units belng tzken from r




- 69 ~

particular part of the populestion, with a ccrresponding lack of coverage of
other parts of the population, is thus svoided. For this resson, systematic
samples are frequently more representative of the population then random
semples. If one is primerily interested in estimating srithmetic means, there
is no reason why systematic sampling should not be used so long as the start-
ing point is tekén at random. But the difficulty of estimating stendard errors
from such samples should not be forgotten.

A precticel sempling scheme known as double semoling has been studied
rathér thcroughly 2nd seems to be uscful ifi some types of work: If informa-
tion is wanted about & population characteristic, which may be represented by
¥y, and that charscteristic is difficult to messure, it may be preferable to
measure g characteristic, x, that is correlated with y and is cesler to measure.
The relationship between y end x can be determined from a small sample in
which values of both are obtained. Then, if o large sample is used to get an
accurate estimate of x for the population, a corresponding estimate of y can
be computed from the relation between y and x determined previously from a
small semple.

This method of sempling has meny spplicetions to economic surveys. For
exsmple, it might be difficult to get information regerding & farmer's income
from the sale of hogs by direct questioning because of e netursl tendency on
the part of some farmers to be reticent sbcut their income. Furthermore,
some farmers might not remember the exagt amounts received. Information
regarding the number of hogs sold could be obtrined more easily and accurately.
If the relationship between income from the snle of hogs and the number sold
were known, the desired income dnta could be computed. This relationship
could be esteblished by getting informatioh on both items from a few farmers
who were willing and able to =supply it.

Double sampling is elso useful when it is necessary to learn the relative
numbers of individuals in various streta for weighting purposes. In such
ceses & large sample is taken to determine thcse numbers, but only a small
fraction of it need be studied ir detail to derive the other information
sought. The entire sample is used only to determine the weights that shoild
be applied to derive sn undbirsed svernge. For example, we might take a large
sample of farms to meesure the relative numbers of livestock, dairy, and field-
crop farme in = Stote and then investigetce labor requirements for a smaller
sample of farms. The larger sample gives informaticn on the relative numbers
of farms of each type so the types cen be properly welghted in the semple to
give an unbiassed aversge of the labor requirements per farm in the State.

Rendom Sampling

The process ¢f taking a random sample from 2 particular population is
more Aifficult thon one might suppose. The use of tebles of random numbers is
a helpful device that is being employed by most statisticliens at the present
time. The individual sompling units in the population are numbered consecu-
tively and reforence to ¢ table of randem numbers provides one with a selec-
tion of sempling urits that is free from bias. If » random seample of 100
from a county contesining 2,238 farms wes wanted, such a tadle of rrndom numbers
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would enable the selection to be mede without difficulty, provided a list of
all farms in the county, such as a tax assessor's list, were avoilnable. When
no such list is aveiloble, the problem 1s more complicated, In such cases, the
tables of random numbers may be used for the selection of points on a map at
rerdom. The farms located at those rondom points will constitute a good
approximaticn to a random ssmple of farms, provided the density cf the points
avorilable for selection is proportioral to the number.of farms in each part of
the county.

Random samples are usually recommended when information about the popula-
ticn is insufficient to permit streotificetion or when it is known in advence
‘that stratification by various criteria would not reduce the sampling errors
in th: final results. Random ssmples will give unbiased estimates of arith-
metic means ond will permit the obteining of estimates of the variances of
those means. The mein disadvantage of rondom sampling is the comparatively
large sempling errors that ore usueslly found in results obtaincd by this method
when there is much variabllity within the population.

The variance of a mean for a random sample can be estimeted very easily.
When the numher of individurls in the semple is small in relation to the num-
ber in the population, the formuls, V_ = V/n, gives a good apnraxination For
larger samples use should be made of the more exact formula, V. % = (N - n)
Figure 13 presents a comperison of the results given by these two formulas in
estimating the variance of the avernge cropland per ferm in a North Carolina
county for samples of different sizes. The data required for the comstruction
of these charts were obtained from table 9. V is equal to 670 snd N is equal
to 2,238. It is evident that the estimate of the variance of an average is
too large when the population is assumed to te infinite. This error becomes
reletively more important as the size of the sample epproaches 100 percent of
the population. The exact formula is so easy to use that it seems desirable
to avoid such errors whenever sufficient information about the population is
available to do so.

Stratified Sampling

In practice it is usually possidble to make use of some form of stratifica-
tion. In drawing a sample of farms from a county, for example, the civil
dividions of the county provide a convenient basis for stratification that can
nearly slways be used to good advantage. Such stratification is desirable for
adminietrative reasons and will also provide nore accurete estimates than
random semples in meny cases. Farme in the same location tend to be more
rearly slike than farms in different locoticns beceuse type of farming generally

varies from one geographic area to snother.

In making use of stratified samples, it should be remembered that each
stratum is sampled at random so thet a separate random sample of observations
is obtained from eech stretum. When 2n arithmetic nesn is computed from the
combined date for 2ll strata, it is necessarv to give each stratum its oroper
weight in order to arrive at an unbiased estimate of the true poprulation mean.
The true meen of the individual strata may not be equerl to ecrch other.
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Therefore, the true mean for all strafa combined is a weighted man of the
individual stratum means. This weighted mesn can be represented by the equa-
tion,
3(X,nm,) :
e T R (55)
_ S{K,
in which the KI represent the numbers of ssmpling units in the various indivi-

dual strata, the m1 represent the true values of the corresponding stratum

means, and m represents the woighted mean of the individusl stratum mesans.
Zquation (55) shows that m may be compated by multiplying each stratum mean by
the number of sampling units in the stratum, adding the products, and dividing
. the result by the total number of srm»ling uhits in all strata. This procedure
would be equivalent to computirg the avithmetic mean of all observations in the
population because each product of the type, Kimi' merely represcnts the sum

of all observations in a single strrtum and. the cxpression, S(Kimi » represents
the grend total of the observations in nll strata.

When a stratified sample is teken from a population, she numerical values
of the Ki should be lmcwn in advance. The sample dnta from each stratum pro-

vide estimates of the individual stratum meens. The best estimate of the popu~
lation mean that cen be made from the data is given by the equation,

| - S(K,X,)
. S(Ki)
which is identical with equation (55) except that the sam)le means, Xy, for

- (56)

the various strata are substituted for the population values. x represents

the best estimate of the true meen for the entire populatiion. X is an unbiased
estimate of the weighted population mean, m, because the observed mean for each
stratum 1s given its proper weight in the computations.

As an illustraticn of this procedure, consider the data in table 5. The
best estimate of the aversge acresge of cropland per farm for the five town-
ships would be a welghted average of the five township aversges. The weight
to be applied to erch township aversge would be given by the number of farms
in each township. The five township averrges and their weights are shown in
table 10.

Table 10. - Township welghts ond average acres of cropland per ferm, besed on
samples of 20 €farms per township.

Township Farms in Cropland per farm indicated
Township by snmpla of 20 farms

number acres
1 205 26.35
2 77 ' 29.55
3 497 30.15
4 214 - 41.60
5 227 27.80

Total 1,220
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Applying equation (56) to these daitr, the average acres of cropland per
farm for each townshir is multiplt¥ed by the number of farms in the township.
The sum of the five products 1is 37,875. Diviéing this figure by the total
number of farme gives an estimate cf 87875/1220 or 31.05 for the weighted
mean, X.

If the sample were drswn in such a way that the nunber of sampling unitse
taken from each stratum were proportional to the number present, the sample
would be self-weighting. In such ceses the arithmetic mesn of all observa-
tions in the sample would be an unbiesed estimete of the population mean.
This can be proved very essily. If the number of sempling units teaken from
each stratum were proportional to the number present, the number taken from
" each stratum would bve represented by ki in the equation,

ky =Ky - - - -- - === (57)
Ir this equation K.l represents the number of sampling units present in a

stratum and a represents the fraction taken in the sample. Solving equation
- (57) fer Ki’ one obtains

1
K,=7k - --------- (58)
When the quantity, i ki' is substituted for Ki in ecuation (56) the eguation
e

can be written in the form, 1 -
S kyxy)

Fe e - - - = - - o= o= (59)
5(5 k) |

or
1 —-—

SR R
z S(ki)

Dividing numerator and denominator of the right-hand member of this eguation

by 1/a gives the required result, Ste.=
TS (ky)

The variance of the weighted mesn computed by equetion (56) is given by
the equation,

Sk, 2 V)
_ i X, )
V5 = T, TS T o Tooss-s (61)
s(K,)
in which V_ represents the verinnc: of tho i-th strotum meen. If the verionce

X,

i
f the individusl observeticns is the same for all strata, the veriance
of an individurl stratum mean is given by the equation,



in which ¥V is the vrriance of the individual c¢bservations wilthin streta, K1 is
the number of sampling units in the i-th stratum, ky is the number of sampling

unite teken from the i1-th stratum to estimate the stratum mean, ii.

For the data in teble 10, an estimate of V is nrovided by the mean square
within townships in table 6. The varisnces of the five individual township
means in table 10 are
657 (205 - 20) -

= 29.64
*1 20 205

<
I
u

V. = 857 (77 - 20

= = 24,32
X2 20 77
657 (497 - 20 .
V— = = 053
X3 % a5 34
v. = 857 (214 - 20y _ o9 g
X3 20 214
v. =857 (387 - 20y _ 9. 96

Xg 20 227

The varisnce of the weightel meon, X, estimeted by equation (61) from
these data, 1is

Yo = (205)2(29.64)+(77)2(24.32)+(497)2(31.53) +(214) % (29. 78) + (227) 2 (29. 96)
= (1220)2

It is important to note that this estimate is only » measure of the
accuracy with which the weighted meen of the five township averages was com-
puted., As thore are more then five townships in the county, this variance
cennot be interpreted as 2 measure of the sccuracy with which the weighted
mean of the five township sverages represents the mean for the entire county.
Such an estimate would have t¢ include a component introduced by the veriation
of the true township aversges bocause the five townships were only e sample of
all townships 1n the county.

= 8.12

The rcader should note that the accuracy with which the weighted mean for
the five townships has been estimated depends, not ocnly upon the total number
of farms in the semple, but a2lso upcn the way those farms were apportioned
amceng the townships. The sample used in the preceding computati ons consisted
of 20 farms from each of the five townships, A different number of farms from
each township would alsc yield an unbinsed estimate of the mesn for the five
townships, but the veriance of that estimate would be different, even though
the total number of tfarms fron £11 townships remesined equal to 100.
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In practice, 1t is usually desirable to apportion the sample in such a
way that the variance of the weighted mean, X, will be as small as possible.
If the variance of the individual observations within strata is the same for
all strata, the most efficient sample is obtained by meking the number of
sampling units from each stratum pronortional to the nvrmuer pres=ni in that
stratum. For the example discussed previously, the 1C0-farm sarple constitutes
100/1220 or 8.197 percent of 21l farms in the five townships. Under the
assumption that the variance of cropland for individual farms within each
township is equal to 657, the most efficient sample would te obiecined by
teking 8.197 percent of the farms in each township. To the nearest whole num-
ber, the farms in the sdmple should be sllocated sccording to the schame,

k; = (0.08197)(205) = 17
K, = (0.08197)( 77) = 6
k, = (0.08197)(497) = 41
k, = (0;08197)(214) = 17
kg = (0.08197)(227) = 19
S(k,) = (0.08197)(1220) = 100

If this allocation of ferms hed been used instead of the one given in
table 5, the veriances of the five township mesns would have been

1 17 205

v— = 657 ( 77 ~ 6:) = 100.97
2 6 77
3z 41 497

_ 657 (214 - 17 =
V—x- ( ) = 35.58
4 17 214

s 19 227

The variance of the weighted mean would have been
(205) (35.45)+(77) 2(100. 57)+(697) 3(14.70) + (214) 3(35.58)+ (227) 3(31.69) _
%= (1220)2 )

Using the most efficient sllocation of farms, instead of taking 20 farms from

each township, would have resulted in an estimste of X with a variance of 6.03
instead of 8.12. In problems of this kind, proportional sempling thus results
in » more accurate estimate of the weighted average in addition to simplifying
the computaticn of that avermge as indicated previously.

6.03
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The mathematical enalysis of stratified samples has so far been discussed
under the assumption that the varlance of the individual observations is the
seme 1n all strate. Whenever this assumption is not justified, the analysis
of the data should be modified accordingly. When the variances within the
strate do not differ much, the error introduced by using the methods previously
described is so small that it may be neglected. When such differences are
large, it is desirable to use methods of analysis that take those differences
into account, No satisfactory method has yet been developed for adapting
analysis of variance to such dats. The other computations can be mede to con-
form to the requirements of the date without difficulty.

For illustrative purposes, consider the date in table 5. These data have
been treated as though the variance of cropland for individual farms was the
same within all townshlps. But when a sepsrate estimate for each township is
sctually computed, the following results are obtained:

Vl = 532
V2 = 323
V3 = §£57
74 = 11563
Vs = 618

These.¥ariences differ €dufficiently to.warrant the conelusior shsth éroplsmd for -
irdividual farms is more variable in some townships then in others. Under

this hypothesis, the most efficient allocetion of a total sample of 100 farms
would be obtained by maeking the number from each township proportional to the
product of the number of farms in the township and the standard error of
croplend for individual farms in that township.

The total number of farms in each township is given in table 10. The
corresponding standard errcr of cropland for individual farms in each township
can be obtained by extracting the square roots of the 5 varisnces given above.

s, =,/ 532 = 23.07

L]

s, =,/ 323 17.97

s, = 6567 = 25.63
s, = /1153 = 33.96
sg =/ 618 = 24.86

The number of farms to be taken from each stratum should be proportional to
the quantity Kisi' The most convenient way tc compute this number of farms is
to compute a product of the type, Kisi’ for each township. This product is

divided by the sum of all products of that type and the result is multiplied
by the total number of farms to be tcken frem all townships. In mathematical
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language, the number of farms to be taken from each township is given by the
equation,

Kisi

ki =n —
S(Kisix
where n is the total number of farms to be taken from all townships. The
necessary computations for spportioning a sample of 100 farms asmong the five
tcwnships at hand are given in table 11.

Toable 11. - Allocation of a sample of 100 farms smong five townships on the
basis of the number present snd standard error of cropland for
individusl farms

Farms in Stendard error Kisi Parms in
Townshi Townshi i .\

P 2 P of c:opland Kisi S(K.si) sa?ple

i i 1 kg
number acres number

1 205 23.07 4729 0.1489 15

2 77 17.97 1384 .04326 4

3 497 25.63 12738 .4011 40

4 214 33.96 7267 . 2288 23

5 227 24.86 5643 S1777 18

Total 1220 31761 1.0001 10C

The allocation of ferms given in the last column differs slightly from
the result obtained by making the number of farms from each tcwnship propor-
tional to the number present in the township. The precision of the weighted
average should be computed from equation (61) beceuse the number of farms pre-
sent in erch township is still used to compute the estimate of the welghted
average from the individual township averages. The wariences of the five town-
ship aversges are

Vg, = 282(20 - 15 o 3287
1 15 205

vy, = BB (L= 4 = 76.56
2 4 77
3 40 497
4 23 214
5 18 227

The variance of the weighted aversge is
= (205)2(32.87)+(77)2(76.56)+(497)2(15.11) +(214) (4. 78)+ (227) 2(31.61) _ 4.5
x (1220)2
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This estimate is slightly larger than the value 6.03 obteined for the most
efficient allocation under the rseumption of equal varisnces within townships.
But the difference is not large and shows that the assumption of equal variances
used previously did not intrcduce any serious errcr. It is only under rather
extreme conditions thrt much concern need be felt about differences in vari-
abdility within the streta. In mcst prectical problems use of an average value
is justified. It is fortunate that this is the case because the assumption of
equal veriances usually simplifies the statistical analysis,

The aove discussion covers the essentisl mathemetical principles under-
lying stratified sampling. The student should notice particularly that some-
thing must he known ahout the nature of the varis™ility in a pcpulaticn before
these principles can be spplied. After a semple hes cnce been taken, an
enalysis of that semple will yield the informsticn required to design an

"efficient sampling scheme to We used in future work. The examples given in
the preceding discussion illustrste the general nature of the process. The
methods descrited can “e extended tc more complicated problems without diffi-
culty. A more detailed study of the variadility in the population is all that
is required tc investigate the adventages of more complicated stratifications.
These will nct he descrided ot present, lest the details of computation divert
-attention from the fundemental principles now under discussion.

Exercise 21.-in a given populetion, the veriance of individual ohservations is
the same in £11 streta and the number of ohservations taken from
each stratum is prcportional to the number present. Then k; = aKi

where a 1s the fraction teken from each stratum. Under these
conditiocns, shcw thet equation (61) cen he reduced to the simple
form,

S O |
- Sl )S(Ki}

where V is the varience within strata.

Exercise 22.-In the text, the varience of a weighted mean for a sample like
that descrided in Exercise 21 was computed from equation (61).
There were 1,220 farms in the five tcwnships and the fraction
taken from each was 0.08197. The variance within townships was
657. The variance of the weighted mesn wes found to be 6.03.
Show that the equation derived in Exercise 21 gives the same
result. Which dc you think is easier to use?

Exercise 23.-In the text, the varience of a weighted mean wes computed under
the assumption that the variance cf individusl ohservations was
different in each of five townships. The most efficient alloca-
tion of the semple was used in the example. Ccmpute the variance
of the weighted mean for the case where the k; are all equal to

20 enc¢ for the case where k; = 0.08197K,. Compare the results

with the value cf 6.21 given in the text and explain the
differences,
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Subssmpling

The exomples of stretified sampling given in the precedlng section were
concerned with the problem of estimating the average cropland per ferm for a
ponulation of 2ll farms in five townships. If it were desired to use that
avereze a8 on estimate for the entire county, the protlem would be ono of sub-
sempling instead of stratifiecd sempling. This distincticon should be self-
evident. The average for the five townships cculd be ascertained without
error by enumerating every farm in those townships, but such an aversge would
nct necessnarily be equal to the average for the county. It wculd te an esti-
mate of the county average, Lut would be subject to srror.

If one wishes to interpret the avernge for the 5 townships as an estimate
of the county average, the formulas given in the preceding section for comput~
ing the variance of that aversge no longer apply. Those formulas apply tc a
county averagze only when every township in the county is sampled. The variance
of the five-township sverage as =n estimate of the county average must include
-an additional term to allow for the variation between townships. This
involvee an extension of the methematical methods descrited in the preceding
section. The same data cen be used to illustrate the procedure.

Twenty farms were teken et random frem each of five townships which were
themselves a random ssample ¢f the nine townships in the county. The cropland
on the 100 farms in this sample is given in tehle 5. The problem at hsand is
to derive sn estimate c¢cf the average croplend per form for the entire county,
together with an estimete of the varisnce of that average. The formulas given
in the preceding section for computing the weighted aversge from the five-
township semple still apply. The weighted averase ccmputed from the sample by
those metliods serves as arn estimete of the aversge for the county as a whole.
The only difference lies in the varirnce of that estimate.

The formula used to compute the veriance of the wélghted average from the
subsampling point of view is developed in two steps. First, assume that the.
five townships nre a sample of an unlimited number of townships and that each
township conteins an unlimited number of farms. Under these condltions the
variance of an orserved township mean would be

v
V= =V, + — - . - - - - (64)
R
In this equation, Vt is the wvorirnce of the true township means, V is the
variance within townships, and ki is the number of farms taken from the town-
shin. The variance of the weighted mesrn for » samnle of n townships would be,

n [ 5 v -

i=1

.

As the county is not an infinite population but e finite population of N town-
ships with Ki farms in individuanl townships, equation (65) will overestimte
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the sempling variance of the welghted average. The estimate given by that
equation must be reduced by deducting the quantity that represents the sampling
variance of the mean of the entire finite population, when that populstion is
itself ccnsidered as a sample from the hypothetical infinite population. This
is the ssme reasoning that was used in deriving equetion (22) from equation
(21). The gquantity that must be subtracted is

N
s l:xiz(vt + %—-)]
1=1 | i

N 2

S (Ki)

j=1

It should be observed that each of the summetions in this correction term in-
cludes N items, one for each township in the county. The corresponding summas
ticns in equation (65) include cnly n items, one for each township in the
sample. The equation to be used in estimeting the variance of the weighted
average, when that average is considered ss rn estimste for the ccunty, 1s
thus of the fornm,

an f ¥ [
2 v 2 v
'8 xW+;ﬁ 5 xw+~4
v =t=1 LYK PR i T TR T I (66)
4 = - ~
n 2 N 2
s (k,) s (¥y)
1=1 * =1

All of the quantities entering into this equetion have been defined pre-
vicusly. N is the number ¢f townships in the county. n is the number of
tcwnships in the sample. Ki is the number of farms in the i-th township and

ki is the number taken from thest township. Vt is the variance of the true

township meens, estimsted from the enalysis of varlance for the éample, and V
is the variance within townships. For the data at hand

N = 9 n = 5
!
K, = 205 | k = 20
Ky = 77 Townships ky = 20
K, = 497 ineluded k= 20
K, = 214 in sample k, =20
Ky = 227 Ky = 20
KG = 258
K7 = 220
K8 = 276
Kg = 267

From the analysis of veriance given in table 6 is obtained,

Vt = 3.90 v = 657
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The weighted aversge for the five townships in the sample was computed pre~
viously from the data in table 10. The average cropland per farm, estimated
from the five-township sample with 20 farms taken from each of those town-
ships, 1s 31.05 acres. If this estimate is to be used as a measure of the
cropland per farm for the entire county, the variance of that average from
such & point of view would have to be computed from equation (66).

v
The quentity V, + i~ has the value 3.90 + g%z * 36.75 for all five Sown-

i
ships in the sample because exactly 20 farms were takXen from each township.

-

The quantity Vt + é& will differ for eacn of the nine townships in the
’ i

county because the number of farms prosent in each township is not constant.
The values of this quantitv for the nine townships are:

657

3.90 + = 7.10
205
657
3.90 + =— = 12.4
P 2.43
657
3.90 + == = 5,
497 22
657
3,90 + — = .97
214 6
3.90 + 2 . .99
227
657
W90 + = = .
3 pre 6.48
657
.90 + = = 6.89
220
€57
3.90 + =—— = .2
276 6.28
657
3.90 + — = .36
267 6.3
The variance of the weighted average is:
V.=t 2 2 2 2
3 (a)? (205)<(36.75)+(77)<(36.75)+(497) ©(36.75) +(214) 2(36.75) +
(227)2(36.75) -
L 2 2 2 2 2
?53 2 (208) “(710)+(77)©(12.43)+(497) “(5.22)+(214) “(6.97)+(227) ©(6.79)+
NS

(255) 2(6.48)+(220)%(6.89)+(276) % (6.28) +(267) % (6.36) =

9.69 - 0.80 = 8.89
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The variance of the weighted average as an estimate of the county average
is thus 8.89. The variance of the same average, cousidered only as an esti-
mate of the true average for the five townshkips in the sample, was 8.12. When
the weighted aversge is considersd as an estimate for ths county, the sampling
error is larger than when the average orly is considered as estimate for the
townships included in the sample. This is the kind of result that could be
expected from the differense in viewpoint. It serves to emphasize that the
particular population to which the results of s ststistical analysis apply must
be borne in mind when the analysis is made. A sampling error attached to an
average is meaningless when the population to which the average arplies is not
spec¢ified. The sampling error of the same avernge can heve many different
numerical values as the interpretation of that avernge changes. The one that
is used depends upon the particular pepulation everage of which the sample
average is supposed to be an ostimate. ‘

Exercise 24.-Suppose thet the n values of ky are equal to each other and are
represented by k. Also suppose that the N values of Ki are equal

tc each other and are represented by K., Under these conditions,
show that equation (66) reduces to the form,

= .]_'....]; 4+ _1._..—..1'_-
vi‘ vt(n N) v(nk NK)

Exercise 25.-When n = N equation (66) reduces to equation (61), where the V;i

are as defined in equation (62). Prove that this is true and
explain why one could expect such a result on the basis of the
difference between subsampling snd stratified samrling. In
working this exercise you should notice that
K; -k 1
Y. _2____l) = V(;—.— %_)

ky Ky T

Exercise 26.-The exsmple given in the text to illustrate how the veriance of
a weighted average is computed in subsanpling was based on a
sample of 20 farms per tcwnship for each of five townships.
Compute the variance when the nvmber of farms tsken from esnch
township is proportional to the number present. That is, let

kl = 17
1’12 = 6
1".'.3 = 41
134 = 17
k5 = _lg

100
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Fiducial Limits for Means From Stratified
Samples and Subsamples

The problem of establishing fiduclal limits or confidence intervals for
means estimated from random samples was discussed in an earller section,
Similar methods can be applied to means estimated from stratified samples and
subsamples.

For a mean from e stratified sample in which the variance of individual
observations is the same in all strata, such limlts are obtained by computing
x ¥ tss. The value of t to be used depends upon the number of degrees of

freedom from which the variance within strata was estimated. If the data in
table 5 are consldered as a stratified sample from this kind of populstion,
the varisnce within townships would be estimsted from 95 degrees of freedom
as shown in table 6. The weighted meen for the five townships was 31.05 end
the variance of that mean was 8.12. The standard error of the mean would be

J 8.12 = 2.856. The value of t for 95 degrees of freedom would be about 2, as
indicated by table 3. The fiducial 1imits on the observed weighted average
would thus be 31.05 + (2)(2.85) or 25.35 and 36.75. One would thus have 95
chances out of 100 to be correct if he concluded that the range 25.35 to
36.75 included the true mean for the five townships..

When equal variances within the townships are not assumed, the t-table
should not be used to compute such rsnges. The above procedure is rigorously
correct only when such varisnces are equal. When the variance of the average
is computed from separate estimetos of the variances within individual town-
ships, only zpproximate results can be obtrined. Small-szmple theory to fit
this case has not yet been developed and some epproximation must de used. It
is usually safe to assume that the frequency distribution of averages is
Normal when fairly large samples are used. The fiducial limits would then be
approximately X % 1.9653_t as demsnded by the Normel Curve. The factor 1.96 is

so close to 2 that most statisticians prefer to use 2 instead of the exact
value. Usually other spproximations are involved in the analysls, such as
the assumption of Wormality itself, so that the error introduced by using 2
as a factor instead of 1.96 is relatively unimportant.

The t distribution should slso not be used to compute fiducial limits for
aversges obtained by subsampling. The verience of such an average involves
the quantity Vt, which cen only be estimated epprcximrtely from the snmple

Trere 1s no justification for attempting the refincment represented by the t
distribution when cther approximations are involved in the anelysis. When
the weighted mean, 31.05, is intcerpreted as an estimate of the mean for the
entire county, the variance of that mean is 8.89. The value of 8= is thus

J/ 8.89 or 2.98. The fiducial limits from this point of view are
31.05 + (1.96)(2.98) or 25.21 and 36.89.

The fact that the t distribution cennot be adapted to problems in sub-
sempling, or to prodlems in stratified sampling when the varisnces within
strata are uncqual, leads to no serious difficulty in most practical problems.
The samples with which the sgricultural statistician or eccnomist has to work
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are usually sufficiently large so thot the refinements represented by small-
semple theory are not particularly important. The t distribution approaches
the Normal Curve go raopidly as the semple size lncreascs that the t distribu-
tion can usurlly be dispensed with.' In general, the expression X * 25§ can

be used to represent the 95 percent fiducial limits on an observed averago
with sufficient accuracy for »ll szmaples likely to be encountered in practice,
Unless the semples are very smell, there is no need to be unduly concerned
about refinements like those represented by the t distridbution or the differ-
ence between the factors 2 and 1.96. Other details are ususlly more worthy
of attention in the operstion of a sampling study. But when spproximations
are used, it ig well to be eware of thelr nrturs.

Exercise 27.-In erercise 23 the variance of the weighted mean for five town-
ships wes computed for the semwle shown in table & under the
assumption that the verisnce of croplend for individuel farms
was different for each township. The weighted mean was 31.05,
Compute the 95 percent fiduciel linits from this varience and
compare the results with those given sbove in the text, under
the essumption thet th~ veriances were ecusl. Do you think that
the extra worlk involved in computing separate variances within
townships makes enough difference in the final result to dbe
worth the effort?

Sempling Units and Exprnsicn Factors

In estimrting & quantity like the average croulend per ferm irn a county,
it might be supnosed that the individusl farm would have to be tsaken ag the
gempling vwnit, This is not necessarily true. If individual farms were teken
a8 the sempling units, the sample would consist of individuel farms teken at
rendom from the county as o whole or from various strata in the county. If
the farms were to be enumersted by mail, this kind of arrengement wculd be as
satisfectory rs any other. On the other hand, if the informetion were to be
obtained by actunlly visiting eech ferm in the sample, the smount of travel
reguired could bYe cxcessive. Ag o vractical matter, the travel could be
reduced by visiting grcups of contiguous farms choean at random. Under this
s cheme, cach group of farms would ceonstitute a sampling unit. A sample of
farme taken in this way will usually yield less accurate estimates then a
sample of the same size in which incdividual farms are the sampling units.
Neighboring frrms tend to be more neesrly »like than farms at a distance from
esch other. The loss in accurrcy caused by grouping depends upor the degree
of similarity botween neighboring farme. The more nesrly such farms are slike,
the more information will be lost by erocuping. But the lower cost of erumerat-
ing such a2 seimle often enables one %0 increase the totel number of farms
enumeratec, This inerease in the total size of the samule tends to conpensete
for the less of precision introduced by grouping. At tires the compensating
effect ie s0 gZreat thet the grouped ssmnle will give more accurate results
then any semnle by individual farms that could be enumereted at the same
cost.
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The scientific study of sempling units of differ~nt kinds and sizes for
gurveys of different types 1s d fiecld that hes not yot been fully cxplored by
stetisticisns. Many of the dathemetical principles have been worked out, but
the detr reguired to meke use of them are still incomplete. In desigring o
survey tc ostimnte the cersplend on farmms, for cxemple, the dogrec of simi-
lrrity betwcen contiguous farms must be known before it is possidle to Jjudge
th~ reintive merits of individusl ferms versus groups of contiguous farms as
sempling units. Problems of this kind are mede still more difficult by a
leck of censistency in the behavior of different iteme that usually must be
estinetsd from the same enumerstion. Neighboring ferms sre cften similar
with respoct to some charactrristice and dissinmiler with respect to othors.

A sampling scheme thrt would be cfficient for estinating some items could be
incfficient for cthers,

For ony one item, the variance of a per farm averege, estimeted from a
rrandom sanplo ccnsisting of n groups of farms with k frrms in e grcup is
v

V -
v_= E+DEFH - - - (67)

In this equrticn, N ropresents the number c¢f such groups present ln the popu-
lztion, Vg represente the variance ¢f the true group meens, ~nd V represents

the veriance within graups. Vg crn be estinated from en enrlysis ¢f verlance
in the snme wey that the quentity Vt was cstinrted previcusly. Once the
numeriecal values of Vg and V sre kncwn, oqurtion (67) can be used to estimate

tke precision of an average cbtained by grouping neighbering farms inte
aggregntos ¢f different sizes. Such ccmputetions invelve the nssumpticn that
the veriance between farms within 2 grcrup is constant for grcups of different
sizee. This assumption is not strictly rccurate bocnuse more
cculd legieally be cxpected between ferms in o large group then between forms
ir a smell grcup. Sc long ns the greup sizes under censideraticn do nct
cover too'u;de » range, nc sericus errcr is likely to be introduced. Ordi-
narily, one gculd only be intercsted in ceoprring greoupings within a fairly
narrow range. If large grcups were t0 be consideroed, it would be mcre practi-
ceble tc use the methed of subsempling then tc enumerste rll farms in every
£roup.

The principles underlying this kind of sampling hsve meny epplicctions.
A few yerrs ego, officiels 0f the Agriculturel Adjustrent Administrstion were
interested in cstimnting the yleclds cof individurl corn fields by teking blccks
of four hills eech st rendcm frem cvery field. The e~rs of corn on these
hills were weighod #nd the svernsge welght used tc derive »n cstimate of the
yield for the entire field. 1In this study, ecach four-hill block wes o serpl-
ing unit. The ccrn was weighed separntely for eech prir of two hills in
every sempling unit sc that » mersure of the veristion within sampling units
cculd be cbtrined. The snrlysis of verisnce of the weights of the two-hill
ssmples is given in trble 12.
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Trole 1. - Anplysis of verisnce ol cirn weiglus oov twu=wil. soupacs Jraon
frem individual fields in bloccks of four hills eech.

i ! T on
Joucre of vrrirbility e D¢greos of +  Sua <f ﬂkr 3
Freedom | Squares Squazre
Between 4-hill blocks 491 I 363.920 0.74118
3etween 2-hill samples |
wichin blocks 496 . 213.399 .43024
r
| Tetal | 987 | 577.319

The rnrlysis of verisnce shown in table 12 wss brsed on dota frem five
fields. A soprrote anrlysis wes made for erch Tleld, after which the dearces
of freedonm rnd sums of squares for the Tive fields were combined to give the
analysis shown in the tnble. The moan sgunres shewn in the teble sare, therc-
fere, everage valucs fer the five fields vsed in the snnlysis. These mean
gousres con be used tr show how the pracisicn of the final result would be
affected by chenging the number ¢f hillg included in a blcck. The snean sgquere
tetween blecks in teble 12 is an estimete of 2Vg + V in which Vg ig the vari-

rnce of ithe true block averrgzes and V 1s the verience ¢f the 2-hill canmple
sverszes withir blecke., V is equal tc 0,43024, as ziven in the table, and Vg

thus hrs the value,

0.74118 - 0.47024» 0.15547

2

As the rumber of four-hill blecks teken from esch field wrs smell in
relnticn tc the tctel size of the field, the frctor ¥ =2 in equetion (67) may

te neglected. The verisnce of the evernge corn weight per two-hill sample ran
be written
v v
V- = &Y Lo - - (e8)
n nk

in which Vg = 0.15547, V = 0.43024, n is the nuaber of blocks and k is the
runber of two-hill semples per btlock.

The precisizn of an average, bnsed on any given number of tlocks with an
essigned number ¢f hills per bleck, cen be comrsuted from eguaticn (68) withcut
¢ifficulty. As the sverrcze is expressed in terns of a twe-hill aversge, the
vericence cf thet aversge is on the seme besis regeréless ~f the number =f Lills
0.15547 4+ 0.43024
. 50 (5¢) (1.5)
Tepresents the varianze ¢f the average weight per two-hill semple, whon thet
everrge is compated from 50 blecks with 1.5 twe-hill semples, cr three hills,
rer blnck., The effect of carnging the size of blecck can be nobserved in
figure 14 which gives the variances cof sverazes besed cn 100 two-hill samples
token in dlccks of @ifferent sizes. The number of hlocks decreeses s the
nunher c¢f hills per btleclk incresses,

rcturlly present in e bleck. . For esample, the quentity




Pigure 14. Variance of mean corn weight per 2-hill sample for 100 2-hill
samples taken from a field in blocks of different
sizes (all weights in pounds).

Variance of mean

G - 2 4 6 - 8 10

Number Qf samples per block
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Figure 14 shows that the varisnce of the mean increases ss the samploé
are grouped into larger ageregates., Iuis effect is characteristic of grouping
individuals into larger sempling units. The relative numerical values of Vg

and ¥ determine how marked the effect will be in eny particuler example. If

Vg is small in relation to V, little precision will be lost by grouping. On

the other hand, if Vg is relatively 1arge, the lose of precision will be com-

peratively larée. The size of sampling unit that 13 best suited to a particu~
lar problem depends upon the relative sizes of Vg and V, together with the

relative costs involved in using sempling units of different sizes. In some
practical prodlems, the saving of time and exmense brought about by using the
larger sampling units is so great that tho number of such units can be inereased
. more than enough to compensate for the detrimental effects of grouping. Even
when such is not the cese, this kind of grouping is often necessary to keep

the cost of a survey within reasonrble bounds.

The discussion of srmpling units given above indicates the general nature
of the problems encountered in choosing sppropriate ssrmpling units for a
. particular study. As stated previously, this subject is one that has not yet
been investigated as thorouzhly ss it should be, but it is important in all
applications of sampling theory, both in the field of economles snd in the
biological sciences. The subject has so far received most attention in
sgronomic rosearch in connection with the design of ficld-plot experiments.
Its aupplication to other srmpling proBlems hes only begun. The meathematical
principles are falrly well understood at the present time, but the necessary
drtn required to mske use of them can be obtezined only by experimentation.
Some progress‘in this direction has been mesde by » few agricultural statisti-
cisns snd economiste, but much remains to be done. This is e field of re-
gsaerch thet offers rich rewnrds to snyone interested in the spplication of
scientific srmpling methods to practicsl problems, '

A sampling unit should generslly be chosen in such o way thet 1t is
possible to expand srmple indications to population estimntes. For cxemple,
the interest might be in lemnrning how many people are living on all farms in
s given Stat~ rather thar in the per farm average. If a per frrm average has
beern computed from » senple of ferms, s State estimate of the farm populetion
cen only be obtsined if the total number of farms in the Steate is known with
o falr degree of sccurrcy. If the total number of ferms in the State 1s not
known, the per ferm scverage is of no use, insofar ss sn estination of the
farm populetion in the State is concerned. Sometimes it 1is possible to make
use of additional informetion tc derive sn expansion factor when the number
of sampling units in the populaticn is not known accurstely. When the total
farm 1lend or total croplend in the Strote is known, a "per idere of farm land"
average or o "per acre of ercplend" aversge cen be computed for the ferms in
the asample. The former cen be multiplied by the total acreage of farm land
in the Stete to derive a Stete cstimete, whereas the latter can be multiplied
by the total acreage of cropland.

So long as there is nc binss in the sample of ferms, all of these
expansions will give essentirlly the same results. But the estimetes will
hove different sampling erroers. When a chcice of expension factors is per-
nissible, it is desireble to use the cne that will yield the estimnte with
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the smallest variance. In general, the number of ferms applied to the per
farm average will give the most accurate results for items that are not
correlated with size of farm. For items that tend to increase with size of
farm, an expansion bes~d on farm lend or cropland will be more accurate than
one based on number of farms.

It should be noted that these expansion fectors yield unbiased State
estimates only when they are known sccurately and when the semple is free
from bies. When therec is a preponderance of large ferms in the sample,
allowance must be made for this bias in expending the semple average to a
State estimate. This is generslly possible when the expension factors are
free from error. For iteme thet are independent of size of fnrrm, the esti-

"mete obtained from the per form sverage of the srmple and the number of farms
in the State is the one to use. For iteme thet tend to be multiples of form
land or croplend, the farm land or croplend expernesion will give better
resulte. For items that are correlnted with farm land or cropland without
being simple multiples of them, neither of these expsnsions will give
satiefrctory rerults. Under such conditione » method of expension that

.corresponds to the perticulsr relrtionship at hand shonld be used. Before
such methods cen be discussed, tho student should heve some understanding of
the principles of regression. This subjedt will be taken up in the next
section.

Linesr Regression nnd Correlation

In working with exverimental or srmple drtn, it is often found that
nmersurements on one variable sre related to those on snother. Such measure-
ments are seid tc be gorreleted with each other. Relationships of this kind
are of utmost importrnce in nll statistigrl work. An illustration from egri-
culturel semple dote is given in figure 15.

Figure 15 i rn example of a two-way frequency tabulation that is often
us>d to get some preliminary inform-tion about the degrec of relntionship
between two varisbles. Grouping the detr into cless intervals tskes less
time then piotting the individurl data on greph peper. In this cerse the
tebulation shows thet the number of sherecroppers on e farm tends to increase
as the acresge of croplesnd in the form incresses. A similer tabulation for
the same ferms wes made to investigrte the poseibility of a relstionship
betweer croplend and nurber of workers belonging to the operater's family.
The results are given in figure 16. This tebulation indicates thet there is
little relntionship betweon the acreage of croplend on a ferm snd the number
of workers belonging to the operastor's family.

These indicrted relstionships conform to what cre would expect. Small
farms have no need fcr shorecroppers. Only the larger ferms are likely to
be subdivided into sherecrepper unite#, and the number of such units on a
farm should be roughly preperticnel to the size of the farm. The situation
with respect to femily woerkers is entirely different. In mast regions
perhaps A few more femily wcrkers could be expected on large ferms than on
smell farms because mermbers ¢f an operater's family can find employment at
horie when the farm is large. When the ferm is small, the =2ddlt nembers of
the operator's family usurlly seek emplcyment elsewhere. This cennct be
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regerded as a hard and fast rule because the pocrer families on small farnms
often have more children than the more prcspercus families living on the
larger farms. In such arces a small decrcese in the number of family workers
could be expected with an increrse in the size of the farm. This is actually
the case for some areas in North Carclina and is prcbedly charscteristic of
many of the poorer farming communitiea thrcughout the country.

An analysis of the data used in ccnstructing figures 15 and 16 was made
to deternmine the average nunbers of shsrecroppers and fanmily workers that
could be expeocted cn farms with any gilven acreege of cropland. The easiest
way to do this is tc separste the 171 frrms irto two groups on the basis cf
the acreage of croplend. The farme with en acresge of cropland below the
. everage were placed in one gr-up and the farms with sn screage of cropland
sbove the average were placed in arcther. This provides a separantion of the
171 farms into a group of snall farms end a group of large famms.

The aver~rse acresge of crcpland and the aversge number of sharecrompers
per frm were computed for ench greup with the following results:

Average croplend per farnm Averege sharccrovners per famm
(acres) . (number)
Large farms 93.723 3.170
Small farms 16.911 .581

The twc points represented by these averages were plotted on graph paper
as shown in figure 17. The straight line drawn thrcugh tkese points provides
a chert that gives the sversge number of sharecrcppers on farms with any given
acreesge of cropland.,

A line like the one in figure 17 is cnrlled a regression line. In this
perticuler exsample, the line prsses alncst thrcugh the zero point where the
verticel and horizontal scnles intersect each cther. The zerc point is called
the origin. The fact thet the rcgression line passes almost through the
srigin indicates thrt the sversge pumber of shorecroppers on a farm tends tc
be & simple multiple of the acreaze of cropland in the farm. In other words,
the number of sharccrcppers c¢cn a farn is roughly vproporticnsl tc the acrcage
of croplend in the farm,

The relationship between croplend ~nd the average nunber of fanily
workers cn & frrm is somewhet different. For the two groups intc which the
171 farms in the semple were divided, the esversze cronlend and numbers of
family workers are as follows:

Averege cropland per forn Aversze family werkers per farm
(acres) (number)
Large forms 93.723 2.000

Smell fermse 16.911 ‘ ’ 1.758
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Thesc two points, and the regressicn line established by them, ere shown
in figure 18. It is evident that the averaze number of femily workers cn a
farm is about the seme for farms of different sizes, A small increase is
rssoclated with increasing scres of cronlend, but the relstionship is not
nesrly so marked as in the case of numbers of sharecroppers. '

A relationship of the kind illustrated in figures 17 and 18 cen be repre-
sented by an equation of the fornm,

YT=a+BBq® -=-=-=-=---=--- (69)

When the numerical values of » snd b are given, a velue of Y can be computed
_for sny assigned vslue of X. Equation (69) is sometimes cslled 2 linear
regression equation because the values cf Y computed for different values of
X will lie on a straight line when they are pletted egrinst the values of X
on greph paper. Any straight line on o chart cen thus be expressed by an
equation of that form. To find the equation corresponding to a given line,
it is necessary to find the numerical velues of a end d.

The constsnt, b, represonts the chenge in Y produced by a unit change in
X. It is the slope of the line. In figure 17, X represents cropland and Y
represents the number of sharecroppers on the farm. From the group averages
computed previously cen be determined the change in the number of sherecroppers
for a unit chenge in croplend. The difference in cropland between the large
farms end smell farms is 93.723 ~ 16.911 = 76.812 acres. The difference in
number of sherecroppers is 3.170 - 0.581 = 2.589. - An increase of 76.812 acres
of cropland thus produced an incresse of 2.589 sharecropwers per farn. The
incrense in shorecroppers for each ecere of increesed croplend is, therefore,
2.589/76.812 = 0.033706. This is the numericel velue of b for the line in
figure 17. The numericel value of a crn be obtained by noting that the final
equeticn must fit the two fixed points in the chert, although only one of
these is needed here. Applying this condition to the pcint for the larger
farms, the equation nust satisfy the conditicn that a + (0,033706)(93.723) =
3.170. Solving this equatiocn for a, a = 3.170 - (0.033706) (93.723) = 0.011 is
obtained. The complete regression equetion mey now be written,

Y = 0.011 + 0.033706X - = = = = =~ =~ = = (70)

This equsation ena®les cne to compute the number of sharecropuers expected on
a farm with any given acresge of croplend instesd of reading the chart in
figure 17. The reader should notice that the quentity 0.011 is the velue of
Y obtained when X = O. It thus gives the point nt which the line in figure
17 intersects the verticel axis. This constent is the Y intercent of the
regression line.

A similrr snrlysis of the datr on femily werkers gives the equation of
the straight line in figurec 18. .

2.000-~ 1i758 _ -0.242

b= = 0.003151
93,723 - 16.911 76,812
a = 2,000 - (0.003151)(93.723) = 1.705
Y =1.705 + 0.003151X = — = mm= = - (71)




Figare 18. Relation Detween crop land and number of family workers
for farms in a North Carolina Crop-Reporting District
(March 1942 mailed ¥arm Rwployment survey)
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The values of Y obtained by assigning different values of X would fall on the
straight line shown in figure 18 if they were Hlotted in the chert. This
equation differs from equetion (70) just es one would expect from a compari-
son of the straight lines in figueres 17 and 18, The slopc 1s only 0.1 as
greet and the Y intercept is consiferrdly larger than zero.

These relaticnshins ere immortent in estimating the total numbers of
sharecrosners »nt femily workers on ell farms in the c¢lstrict from which the
sample of 171 farms was tsken. There sre 23,143 ferms, with a tctel crcsland
cf 328,171 acres in that district. The sversge acrerze ¢f crepland per farm
for the entire district is 328171/23142 = 14,181 scres. There are 171 farms
with 6,502 acres of crcalen® in the sample, The averrge acreage of crcnland
per farm in thc sample is thus 6502/171 = 38.023 scres. The snmple evicdently
‘contalins too meny cf the lerger ferme In the district.

The number cf sharecroplers reparted for the 171 farms in the sample is
221. The average numder per farm is 221/171 = 1.2924. If the totsl number
of sharecronners in the Cistrict were to be estinate® from the number of forms
in the district end the averaze number cf shareecrcpners per farm in the sample,
.that estimate would be (23142)(1.2924) = 29,909. This figure would be a poor
estimate. The number of sherecropiers on s farm increases repidly with the
acreage ¢f croplend. The farms in the ssmple contein more cropland, on the
average, then the farms for the district as a whcle. Therefore, the average
number of sharecroniers per farm in the semple is larger then the average for
the entire district. An estimate ¢f the toctal numher of sharecroppers in the
district, based cnly on the number of ferms in the district and the average
numher of sharecrovners per farm in the sample, would he too high,

Now conslder an exprnsicn heased on croplené rather then on the numbher of
farms. The average number of sherecroppers per fore of eroplend in the sample
is 221/6502 = 0.033990. If this figure were multiplied by 328,171,

(328171) (0.033990) = 11,155 would be obtained as an estimate of the total
number of sharecroppers in the district. Thie figure 1s only sbout one-thirc
as lerge as the estimate based on the number of ferms. As figure 17 shows
that the expected number of sherecroppers on a ferm is slmost exactly propor-
tional to the croplend in the frrm, this second estimate is much nearer to
the truth then the other. It would be slightly in error, however, because
the regression line does not pass exactly through the origin.

Now consider the cese of the femily workers. The 171 frrms in the sample
reported & totel of 312 family workers. This gives an aversage of 312/171 =
1,8246 per farm and 312/6502 = 0.047985 per acre of croplend. The correspond-
ing district estimrtes are (23142)(1.8246) = 42225 for the estimete based on
the number of frrms in the District snd (328171)(0.047985) = 15747 for the
estimnte besed on the cropland in the district. These estimntes beer the snme
relation to ecch other es the gorresnonding estimates of the number of share-
croppers in the district. But in this cese, the larger of the two estimates
is the better becouse flgure 1& shows that the number of family workers on a
ferm is slmost indcpendent of tye acreage of cropland in the ferm. But it would
be slightly too high, beceuse there is some increase in number of femily
workers with an increese in cropland.
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This kind of situation is frequently met in practice. It should be
noted that an estimate based on the number of farms differs from en estimate
based on croplsnd only when the average crovland for farms in the sample is
too high or too low. If there were no such bias in the semple, the two esti-
metes would be essentially the seme. The matter of statisticel precision is
the only point it would then be necessrry to consider. In most samplo deta,
and cspeclally those obtained from meiled questionnaires, there is a con-
sistent tendency for the larger farms to be overrepresented. Situations like
those just described are the general rule rather then the exception.

In view of this fact, it is desireble to usc a method of expsansion thst
is thecretically correct under all conditions. The regression equations
corresponding to the lines in figures 17 ~nd 18 provide the basis for such a
method of cxpanding semple indications to population estimates. As the rela-
tionship between number of shrrecropvers and cropland for individusl farms is
given by equation (70), the average number of sherrecroppers per farm in any
sermple is given by the equation,

¥, = 0.011 + 0.033706X = = ~ = = = = = =~ = (72)

In this equation X represents the aversge acreesge of cropland per farm in the
sample and ?s represents the aversge number of sharecroppers per farm in the

semple. It is easy to see that the number of sharecroppers per farm in the
semple will very with the cversge acrease of cropland per ferm in the semple.
To estimate the average nunber of sharecroppers per farm in the population,
it 1is necessrry to know the oversge ecrcsge of cropland per farm in the popu-
lation. If 1 represents the averagc acrenge of croplend per farm in the
populetion, the average number of sherecropvers per farm in the populstion is
given bv the equntion,

yp = 0.011 + 0.033706m =~ = = = === = = = (73)
This equation enables the computation of an adjusted estimate of the average
number of sharecropners per farm for the sample data. It is sn estimate of
the average that would have been obtained directly from the original data if
there had been no bias in the sample. Since Vp represents the average number

4

¢f sharecrcprers per farm in the population, the totel number.in the popula-
tion can be estimated by multinlying this value by the number of farms in the
population. This estimate is given by the cquation,

E = 0.011N + 0.033706¥m =~ - = = = = -« - - (74)

In this equation N represents the number of farms in the population and E
represente the estimated number of sharecroppers in the populaticn.

Tre reader should notice that the product Nm represents the total crop-
land in the population because N represents the number of farms and m
reprrsents the averege creonlend per ferm. The estimate of the number of
sharecropners in the district cbtained by this method thus consists of twe
parts. The constent 0.011 is multinlied by the number of ferms in the
district znd the constent 0.033706 is multiplied by the crepland in the
district. Thesc twc components are added to derive the district cstimate.
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Carrying out these aperaticns yields (0.011) (23142)+(0.023706) (328171) = 11316
as the estimatcd number of sharecroppers in the district. This estimste docs
not differ much froem tie figure 11,155 cbtained from the simple cropland
expansion. 3But it is more accurste because it is bascd on the exmct relation-
ship Ttetween number of sherecropypers and cronland for individual farms. 1In
this case the rei&ressicn line passes almcst through the origin. That is why
the estimate bescd on the simple croplend expension comes so close to the
eocrrect velue.

A»plying the seme nrocedure to the date on fenmily workers, the best csti-
nate of the totel number of family workers in the District is
(1.705) (23142)+(0.00215) (328171) = 40491. This estinate is frirly close to
the figure 42,235 based on the number of ferms. This is r» dircet consequency
of the fact thet the number of family workers on a ferm dces not vary nuch
with the acreage of cronland. 3ut there is » smnll difference between the
twc estimates, because ferms with » large rcrerze of croplend tend t¢ have a
few more fomily workers than the smrller farnma,

Population estinstes brsed or regression egurticns like those described
sbove rre autometically built up from o prrt that is inderendent cf farm size
and a pert thet veries with frrm size. Each part exerts its cffect in proper
nrevorticn. When the slope of the regression line is equal t¢ zers, the
estimerte derived from the regressicn cquation is identicrl with the cstinate
obtained from the number of farms. When the regressicn line passes thrcugh
the origin, the cstimste frem the rcgressicn equetion is equal to the cne
based ¢n creplend. When the regression line has e slope different from zero,
but doces not pass through the origin, the estimntes based cn number of forms
and cropland will both be in errcr. The estinste based cn the regression
line is the only one that will be correct. As ~ generel procedure, the use
of the regression equrtion will yield correct results, regardless of the
nwesition of the regressicn line. Special crses like » = 0 cr b = 0 take core
of themseclves rutometicelly when they cccur. The constehts a 2nd b always
contribute to the finel result in vroper pronmcrtion. The smount contributed
by eech depends uvdon 1lts numeriecrl velue in any werticular sempdle.

This sort of estineting nrocedure hes meny spplicetions. It cen be used
for estimnting crow screrges, livestock numbers, ond nther items sns well »ns
farn employment. Totel 1lrnd in form mey be substituted for crozland in the
equations whenever it is necessary cr desireble to dc so. Crenlend was used
to estimate farm-cmployment items in North Carolina becruse the non-croplend
aypeers t0 be uncorrelated with such items. The use of cropland instead of
farm land thus »rovides estimates of greater rreeision.

The discussion given above indicetes one spplicaticn of the princisnle of
regression. Regresslien equaticns sre alsc useful fer wredicting veluces . of one
quantity from messurements of snother. TFor example, consider the data in
table 13. This teble gives the North Cerolina cotton yvields for a 15-ycar
weriod, together with data on acreage, August conditicn of the crop as
renorted by farmers, rnd rencrted weevil infersteticn.
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